Hard x-ray nanofocusing by multilayer Laue lenses

Multilayer Laue lens (MLL) is a new class of x-ray optics that offer great promise for achieving nanometre-level spatial resolution by focusing hard x-rays. Fabricating an MLL via thin-film deposition provides the means to achieve a linear Fresnel-zone plate structure with zone widths below 1?nm, while retaining a virtually limitless aspect ratio. Despite its similarity to the Fresnel-zone plate, MLL exhibits categorically distinctive focusing properties and their fabrication comes with a wide array of challenges. This article provides a comprehensive review of advances in MLLs, and includes extensive theoretical modelling on focusing performance, discussion on fabrication challenges, their current capabilities and notable results from x-ray focusing experiments.

[1]  M. Holt,et al.  Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells , 2011 .

[2]  C Ferrero,et al.  An analytical approach to estimating aberrations in curved multilayer optics for hard x-rays: 1. Derivation of caustic shapes. , 2008, Optics express.

[3]  Pierre Blondy,et al.  Micromachined filters for 38 and 77 GHz supported on thin membranes , 2001 .

[4]  D. Paterson,et al.  Diffractive imaging of highly focused X-ray fields , 2006 .

[5]  H. Takano,et al.  Circular multilayer zone plate for high-energy x-ray nano-imaging. , 2012, The Review of scientific instruments.

[6]  E. Spiller,et al.  Reflective multilayer coatings for the far uv region. , 1976, Applied optics.

[7]  J. F. van der Veen,et al.  Focusing x-ray beams to nanometer dimensions. , 2003, Physical review letters.

[8]  Christian G. Schroer,et al.  Multilayer Laue Lenses with Focal Length of 10 mm , 2013 .

[9]  Hanfei Yan,et al.  Characterization of a multilayer Laue lens with imperfections , 2007 .

[10]  Zhanshan Wang,et al.  Accurate characterization of a thick multilayer structure using the marking-layer-based scanning electron microscopy method , 2013 .

[11]  Hong Chen,et al.  Stress evolution in B4C and Cr mono-layer and B4C/Cr multilayer films with variable layer thickness for neutron detectors , 2013 .

[12]  F. Pfeiffer,et al.  Nanometer focusing properties of Fresnel zone plates described by dynamical diffraction theory , 2006 .

[13]  Takahisa Koyama,et al.  Optical Properties of MoSi2/Si Multilayer Laue Lens as Nanometer X-ray Focusing Device , 2008 .

[14]  James R. Fienup,et al.  Measurement of hard x-ray lens wavefront aberrations using phase retrieval , 2011 .

[15]  J. Van herle,et al.  Nickel–Zirconia Anode Degradation and Triple Phase Boundary Quantification from Microstructural Analysis , 2009 .

[16]  Hanfei Yan,et al.  A theoretical study of two-dimensional point focusing by two multilayer Laue lenses , 2008, Optical Engineering + Applications.

[17]  Harald Ibach,et al.  The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures , 1997 .

[18]  Hanfei Yan,et al.  Optimization of multilayer Laue lenses for a scanning X-ray microscope. , 2013, Journal of synchrotron radiation.

[19]  Eric Ziegler,et al.  Design and performance of graded multilayers as focusing elements for x-ray optics , 1999 .

[20]  L. Freund,et al.  Thin Film Materials: Stress, Defect Formation and Surface Evolution , 2004 .

[21]  E. Anderson,et al.  Soft X-ray microscopy at a spatial resolution better than 15 nm , 2005, Nature.

[22]  T. Liese,et al.  Development of laser deposited multilayer zone plate structures for soft X-ray radiation , 2011 .

[23]  Tim Salditt,et al.  Coherence filtering of x-ray waveguides: analytical and numerical approach , 2011 .

[24]  Jörg Maser,et al.  Sectioning of multilayers to make a multilayer Laue lens. , 2007, The Review of scientific instruments.

[25]  Nathalie Bouet,et al.  Nanoresolution radiology of neurons , 2012 .

[26]  Jörg Maser,et al.  Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses. , 2011, Optics express.

[27]  C. Schroer Focusing hard x rays to nanometer dimensions using Fresnel zone plates , 2006 .

[28]  M. D. de Jonge,et al.  Differential phase contrast with a segmented detector in a scanning X-ray microprobe. , 2008, Journal of synchrotron radiation.

[29]  Jörg Maser,et al.  Near-field stacking of zone plates for hard x-ray range , 2002, SPIE Optics + Photonics.

[30]  Finn Erland Christensen,et al.  Growth, structure, and performance of depth-graded W/Si multilayers for hard x-ray optics , 2000 .

[31]  H. C. Kang,et al.  Nanometer linear focusing of hard x rays by a multilayer Laue lens. , 2006, Physical review letters.

[32]  Suresh Narayanan,et al.  One-dimensional hard x-ray field retrieval using a moveable structure. , 2010, Optics express.

[33]  Wouter Leroy,et al.  Thirty years of rotatable magnetrons , 2012 .

[34]  S. Rehbein,et al.  Multilayer Fresnel zone plate for soft X-ray microscopy resolves sub-39nm structures. , 2011, Ultramicroscopy.

[35]  R. Wirth,et al.  Focused ion beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy , 2004 .

[36]  R. Bionta,et al.  Hard x‐ray sputtered‐sliced phase zone plates , 1994 .

[37]  Elina Färm,et al.  Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime. , 2011, Optics express.

[38]  D. Attwood Soft X-Rays and Extreme Ultraviolet Radiation , 1999 .

[39]  Jörg Maser,et al.  Wedged multilayer Laue lens. , 2008, The Review of scientific instruments.

[40]  O. Bunk,et al.  Contrast mechanisms in scanning transmission x-ray microscopy , 2009 .

[41]  Toshio Suzuki,et al.  Impact of Anode Microstructure on Solid Oxide Fuel Cells , 2009, Science.

[42]  Wah-Keat Lee,et al.  Full-field microimaging with 8 keV X-rays achieves a spatial resolutions better than 20 nm. , 2011, Optics express.

[43]  C. David,et al.  Zone-doubling technique to produce ultrahigh-resolution x-ray optics. , 2007, Physical review letters.

[44]  Anatoly Snigirev,et al.  Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling , 2013, Journal of synchrotron radiation.

[45]  Mogens Bjerg Mogensen,et al.  Microstructural and chemical changes at the Ni/YSZ interface , 2001 .

[46]  Banqiu Wu,et al.  High aspect ratio silicon etch: A review , 2010 .

[47]  Sergei V. Kalinin,et al.  Structural consequences of ferroelectric nanolithography. , 2011, Nano letters.

[48]  K. Kohra,et al.  Fabrication and Characterization of Multilayer Zone Plate for Hard X-Rays , 1988 .

[49]  Takahisa Koyama,et al.  Sub-15 nm Hard X-Ray Focusing with a New Total-Reflection Zone Plate , 2010 .

[50]  A. Macrander,et al.  Metrology of multilayer Laue lens structures by means of scanning electron microscope imaging , 2010 .

[51]  W. Chao,et al.  Real space soft x-ray imaging at 10 nm spatial resolution. , 2012, Optics express.

[52]  P Thibault,et al.  Scanning transmission X-ray microscopy with a fast framing pixel detector. , 2010, Ultramicroscopy.

[53]  Klaus Giewekemeyer,et al.  A combined Kirkpatrick-Baez mirror and multilayer lens for sub-10 nm x-ray focusing , 2012 .

[54]  M. D. de Jonge,et al.  Fresnel coherent diffractive imaging. , 2006, Physical review letters.

[55]  Juan Zhou,et al.  Advanced multilayer Laue lens fabrication at NSLS-II , 2012, Other Conferences.

[56]  S. Rai,et al.  Stability and normal incidence reflectivity of W/B4C multilayer mirror near the boron K absorption edge. , 2013, Applied optics.

[57]  B. Lengeler,et al.  Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses. , 2005, Physical review letters.

[58]  Janos Kirz,et al.  Phase zone plates for x rays and the extreme uv , 1974 .

[59]  T. Ishikawa,et al.  Breaking the 10 nm barrier in hard-X-ray focusing , 2010 .

[60]  M. Burghammer,et al.  Hard x-ray nanoprobe based on refractive x-ray lenses , 2005 .

[61]  Q. Shen,et al.  Takagi-taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture. , 2007, 0704.3982.

[62]  Manuel Guizar-Sicairos,et al.  Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data. , 2010, Optics express.

[63]  Keith A. Nugent,et al.  Coherent lensless X-ray imaging , 2010 .

[64]  Bing Shi,et al.  Periodic variation of stress in sputter deposited Si/WSi2 multilayers , 2011, 1106.2154.

[65]  Albert T. Macrander,et al.  Film stress studies and the multilayer Laue lens project , 2006, SPIE Optics + Photonics.

[66]  Li Li,et al.  11 nm hard X-ray focus from a large-aperture multilayer Laue lens , 2013, Scientific Reports.

[67]  Albert T. Macrander,et al.  WSi2/Si multilayer sectioning by reactive ion etching for multilayer Laue lens fabrication , 2010, Optical Engineering + Applications.

[68]  David L. Windt,et al.  Stress, microstructure, and stability of Mo/Si, W/Si, and Mo/C multilayer films , 2000 .

[69]  C Ferrero,et al.  An analytical approach to estimating aberrations in curved multilayer optics for hard x-rays: 2. Interpretation and application to focusing experiments. , 2008, Optics express.

[70]  Jörg Maser,et al.  Oxidation of PtNi nanoparticles studied by a scanning X-ray fluorescence microscope with multi-layer Laue lenses. , 2013, Nanoscale.

[71]  A. Takeuchi,et al.  Development of a multilayer Fresnel zone plate for high-energy synchrotron radiation X-rays by DC sputtering deposition. , 2002, Journal of synchrotron radiation.

[72]  Yiping Wang,et al.  Interface roughness evolution in sputtered WSi2∕Si multilayers , 2007 .

[73]  Weilun Chao,et al.  Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy. , 2009, Optics express.

[74]  W. Yun,et al.  30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope , 2006 .

[75]  Hanfei Yan,et al.  X-ray dynamical diffraction from multilayer Laue lenses with rough interfaces , 2009 .

[76]  Ian K Robinson,et al.  Quantitative X-ray wavefront measurements of Fresnel zone plate and K-B mirrors using phase retrieval. , 2012, Optics express.

[77]  J. Budai,et al.  The Race to X-ray Microbeam and Nanobeam Science , 2011, Science.

[78]  M. Esashi,et al.  Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases , 2003 .

[79]  T Salditt,et al.  Sub-5 nm hard x-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate. , 2013, Optics express.

[80]  L. Freund,et al.  Origin of compressive residual stress in polycrystalline thin films. , 2002, Physical review letters.

[81]  Hanfei Yan,et al.  Multilayer Laue Lens: A Path Toward One Nanometer X-Ray Focusing , 2010 .

[82]  C. Chung,et al.  Platinum etching using a TiO2 hard mask in an O2/Cl2/Ar plasma , 2000 .

[83]  B. Kaulich Phase zone plates for hard x-ray microscopy , 1998, Optics & Photonics.

[84]  P. Thibault,et al.  Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[85]  M. E. Kassner,et al.  Silicide layer growth rates in Mo/Si multilayers. , 1992, Applied optics.

[86]  H. Takano,et al.  Mo/Si and MoSi2/Si nanostructures for multilayer Laue lens , 2009 .

[87]  Levashov Ve,et al.  Analytical theory of zone plate efficiency. , 1994 .

[88]  Xiaolin Zhao,et al.  Micromachining of CVD diamond by RIE for MEMS applications , 2005 .

[89]  Kevin Robbie,et al.  State of the art in thin film thickness and deposition rate monitoring sensors , 2005 .

[90]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[91]  Chian Liu,et al.  Multilayer Laue lenses as high-resolution x-ray optics , 2004, SPIE Optics + Photonics.

[92]  H. Chapman,et al.  High-efficiency diffractive x-ray optics from sectioned multilayers , 2005 .

[93]  R. Scholz,et al.  Mo/Si Multilayers with Different Barrier Layers for Applications as Extreme Ultraviolet Mirrors , 2002 .

[94]  H. Krebs,et al.  Frequency dependent smoothing of rough surfaces by laser deposition of ZrO2 , 2008 .

[95]  Sebastian Schöder,et al.  Full optical characterization of coherent x-ray nanobeams by ptychographic imaging. , 2011, Optics express.

[96]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[97]  H. Takano,et al.  Performance test of Mo/Si and MoSi2/Si multilayer Laue lenses , 2009 .

[98]  A. Stein,et al.  Fabrication of silicon kinoform lenses for hard x-ray focusing by electron beam lithography and deep reactive ion etching , 2008 .

[99]  T. Ishikawa,et al.  Single-nanometer focusing of hard x-rays by Kirkpatrick–Baez mirrors , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[100]  Zhanshan Wang,et al.  Theoretical investigation of higher orders optimized Multilayer Laue Lens for hard x-ray nano-focusing , 2012 .

[101]  Albert T. Macrander,et al.  Performance of a double-multilayer monochromator at Beamline 2-BM at the Advanced Photon Source , 2002 .

[102]  P. Cloetens,et al.  Efficient sub 100 nm focusing of hard x rays , 2005 .

[103]  A. Sakdinawat,et al.  Nanoscale X-ray imaging , 2009 .

[104]  Giorgio Margaritondo,et al.  Hard-X-ray Zone Plates: Recent Progress , 2012, Materials.

[105]  Jörg Maser,et al.  X‐ray fluorescence microprobe imaging in biology and medicine , 2006, Journal of cellular biochemistry.

[106]  Jörg Maser,et al.  Quantitative x-ray phase imaging at the nanoscale by multilayer Laue lenses , 2013, Scientific Reports.

[107]  I. Safi,et al.  Recent aspects concerning DC reactive magnetron sputtering of thin films: a review , 2000 .

[108]  David L. Windt,et al.  Reduction of stress and roughness by reactive sputtering in W/B4C multilayer films , 2007, SPIE Optical Engineering + Applications.

[109]  G. Hubler,et al.  Pulsed Laser Deposition of Thin Films , 2003, Handbook of Laser Technology and Applications.

[110]  G. Schmahl,et al.  Fabrication of thick zone plates for multi-kilovolt X-rays , 2000 .

[111]  C. Ronning,et al.  Nano-X-ray absorption spectroscopy of single Co-implanted ZnO nanowires. , 2011, Nano letters.

[112]  Franz Pfeiffer,et al.  Ptychographic characterization of the wavefield in the focus of reflective hard X-ray optics. , 2010, Ultramicroscopy.

[113]  Christian Morawe,et al.  Wave-optical theory of nanofocusing x-ray multilayer mirrors. , 2012, Optics letters.

[114]  Hanfei Yan,et al.  High-resolution strain mapping in heteroepitaxial thin-film features , 2005 .

[115]  H. Windischmann Intrinsic Stress in Sputter Deposited Thin Films , 1992, Optical Interference Coatings.

[116]  Robert Puers,et al.  A review of focused ion beam applications in microsystem technology , 2001 .

[117]  Y. Chu,et al.  Bright-field imaging of lattice distortions using x rays , 2006 .

[118]  A. Diaz,et al.  Coherent x-ray wavefront reconstruction of a partially illuminated Fresnel zone plate. , 2011, Optics express.

[119]  Jörg Maser,et al.  Coupled wave description of the diffraction by zone plates with high aspect ratios , 1992 .

[120]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[121]  J. Benedict,et al.  A Procedure for Cross Sectioning Specific Semiconductor Devices for Both SEM and TEM Analysis , 1990 .

[122]  Wilson K. S. Chiu,et al.  Zone-doubled Fresnel zone plates for high-resolution hard X-ray full-field transmission microscopy , 2012, Journal of synchrotron radiation.

[123]  Faramarz Farahi,et al.  Image continuity at different levels of zoom for fringe patterns. , 2012, Optics express.

[124]  A. Popov,et al.  Simulation of high-resolution x-ray zone plates. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[125]  M. Köhler,et al.  Etching in Microsystem Technology , 1999 .

[126]  T. Kozawa,et al.  THERMAL STRESS IN GAN EPITAXIAL LAYERS GROWN ON SAPPHIRE SUBSTRATES , 1995 .

[127]  Wang Zhanshan,et al.  Hard X-ray one dimensional nano-focusing at the SSRF using a WSi2/Si multilayer Laue lens , 2013 .

[128]  Akihisa Takeuchi,et al.  Microbeam of 100 keV x ray with a sputtered-sliced Fresnel zone plate , 2003 .

[129]  Jörg Maser,et al.  Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens , 2008 .

[130]  Y. Chu,et al.  High-resolution hard-x-ray microscopy using second-order zone-plate diffraction , 2011 .

[131]  L. Coldren,et al.  Real‐time simultaneous optical‐based flux monitoring of Al, Ga, and In using atomic absorption for molecular beam epitaxy , 1996 .

[132]  H. Hofsäss,et al.  Enhanced resputtering and asymmetric interface mixing in W/Si multilayers , 2013, Applied Physics A.

[133]  Jungdae Kim,et al.  Performance and characterization of the prototype nm-scale spatial resolution scanning multilayer Laue lenses microscope. , 2013, The Review of scientific instruments.

[134]  Tim Salditt,et al.  Hard x-ray nanobeam characterization by coherent diffraction microscopy , 2010 .

[135]  S. Rai,et al.  Growth of Multilayer Optics for Synchrotron Radiation Sources , 2013 .

[136]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[137]  P. Kotula,et al.  Origins of growth stresses in amorphous semiconductor thin films. , 2003, Physical review letters.

[138]  D. W. Hoffman,et al.  Internal stresses in Cr, Mo, Ta, and Pt films deposited by sputtering from a planar magnetron source , 1982 .

[139]  Hidekazu Mimura,et al.  Direct determination of the wave field of an x-ray nanobeam , 2008 .

[140]  M. Asheghi,et al.  Thermal conduction properties of Mo/Si multilayers for extreme ultraviolet optics , 2012 .

[141]  Christian Morawe,et al.  Multilayer growth in the APS rotary deposition system , 2007, SPIE Optical Engineering + Applications.

[142]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[143]  M. Koike,et al.  Nanofabrication of Multilayer Zone Plates by Helicon Plasma Sputtering , 1995 .

[144]  Youli Li,et al.  Metal layer Bragg–Fresnel lenses for diffraction focusing of hard x-rays , 2003 .

[145]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[146]  Y. Amemiya,et al.  Ti/Al multilayer zone plate and Bragg-Fresnel lens. , 1998, Journal of synchrotron radiation.

[147]  E. Dubois,et al.  Reactive ion etching of a 20 nanometers tungsten gate using a SF6∕N2 chemistry and hydrogen silsesquioxane hard mask resist , 2005 .

[148]  D. Windt,et al.  Multilayer facilities required for extreme‐ultraviolet lithography , 1994 .

[149]  A. Macrander,et al.  Depth-graded multilayers for application in transmission geometry as linear zone plates , 2005 .

[150]  T. Liese,et al.  Fabrication of multilayer Laue lenses by a combination of pulsed laser deposition and focused ion beam. , 2010, The Review of scientific instruments.

[151]  M. D. de Jonge,et al.  Quantitative phase imaging with a scanning transmission x-ray microscope. , 2008, Physical review letters.

[152]  Jan Van herle,et al.  Three-dimensional microstructural changes in the Ni-YSZ solid oxide fuel cell anode during operation , 2012 .

[153]  Hanfei Yan,et al.  Mapping local strain in thin film/substrate systems using x-ray microdiffraction topography , 2007 .

[154]  A. Nakajo,et al.  RedOx study of anode-supported solid oxide fuel cell , 2009 .

[155]  H. Yamaguchi,et al.  Characteristics of silicon removal by fine focused gallium ion beam , 1985 .

[156]  A. Magerl,et al.  Oxygen diffusivity in silicon derived from dynamical X-ray diffraction , 2013 .

[157]  Ch. Morawe,et al.  The new ESRF multilayer deposition facility , 2007, SPIE Optical Engineering + Applications.