9. High Electron Mobility Achieved in n-Channel 4H-SiC MOSFETs Oxidized in the Presence of Nitrogen

[1]  T. Khan,et al.  Optimization of 4H-SiC MOS Properties with Cesium Implantation , 2008 .

[2]  A. Stesmans,et al.  Alternative techniques to reduce interface traps in n‐type 4H‐SiC MOS capacitors , 2008 .

[3]  V. Afanas’ev,et al.  Impact of Nitridation on Negative and Positive Charge Buildup in SiC Gate Oxides , 2007, International Semiconductor Device Research Symposium.

[4]  H. Ólafsson,et al.  Sodium Enhanced Oxidation of Si-Face 4H-SiC: A Method to Remove Near Interface Traps , 2007 .

[5]  E. Sveinbjörnsson,et al.  Formation of Deep Traps at the 4H-SiC/SiO2 Interface when Utilizing Sodium Enhanced Oxidation , 2007 .

[6]  V. Afanas’ev,et al.  Control of the Flatband Voltage of 4H-SiC Metal-Oxide Semiconductor (MOS) Capacitors by Co-Implantation of Nitrogen and Aluminum , 2007 .

[7]  Leonard C. Feldman,et al.  Si/SiO2 and SiC/SiO2 Interfaces for MOSFETs – Challenges and Advances , 2006 .

[8]  P. Friedrichs,et al.  SiC Power MOSFETs – Status, Trends and Challenges , 2006 .

[9]  Peter Deák,et al.  Defects in SiO2 as the possible origin of near interface traps in the SiC∕SiO2 system: A systematic theoretical study , 2005 .

[10]  A. Fazzio,et al.  Diffusion-reaction mechanisms of nitriding species in SiO2 , 2003, cond-mat/0311634.

[11]  Andre Stesmans,et al.  Mechanisms responsible for improvement of 4H-SiC/SiO2 interface properties by nitridation , 2003 .

[12]  Peter Friedrichs,et al.  Enhanced channel mobility of 4H–SiC metal–oxide–semiconductor transistors fabricated with standard polycrystalline silicon technology and gate-oxide nitridation , 2002 .

[13]  Mario G. Ancona,et al.  Using the Hall effect to measure interface trap densities in silicon carbide and silicon metal-oxide-semiconductor devices , 2002 .

[14]  S. Dimitrijev,et al.  Effects of nitridation in gate oxides grown on 4H-SiC , 2001 .

[15]  Anant K. Agarwal,et al.  Hall mobility and free electron density at the SiC/SiO2 interface in 4H–SiC , 2000 .

[16]  J. Cooper,et al.  Anomalously High Density of Interface States Near the Conduction Band in SiO2/4H-SiC MOS Devices , 2000 .

[17]  Anant K. Agarwal,et al.  Interface trap profile near the band edges at the 4H-SiC/SiO2 interface , 2000 .

[18]  L. Feldman,et al.  Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide , 2000 .

[19]  Y. Sugawara,et al.  High channel mobility in inversion layers of 4H-SiC MOSFETs by utilizing (112~0) face , 1999, IEEE Electron Device Letters.

[20]  E. Arnold Charge-sheet model for silicon carbide inversion layers , 1999 .

[21]  Michael Bassler,et al.  “Carbon cluster model” for electronic states at interfaces , 1997 .

[22]  V. Afanas’ev,et al.  Intrinsic SiC/SiO2 Interface States , 1997 .

[23]  H. B. Harrison,et al.  INTERFACIAL CHARACTERISTICS OF N2O AND NO NITRIDED SIO2 GROWN ON SIC BY RAPID THERMAL PROCESSING , 1997 .

[24]  Andre Stesmans,et al.  Interfacial Defects in Si O 2 Revealed by Photon Stimulated Tunneling of Electrons , 1997 .

[25]  Andersson,et al.  Electron states and microstructure of thin a-C:H layers. , 1996, Physical review. B, Condensed matter.

[26]  J. Halbritter,et al.  ARXPS studies of SiO_2-SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001) surfaces , 1994 .

[27]  J. Plummer,et al.  Characterization of cesium diffusion in silicon dioxide films using backscattering spectrometry , 1987 .

[28]  Victor F. Weisskopf,et al.  Theory of Impurity Scattering in Semiconductors , 1950 .