Simple approach to current-induced bond weakening in ballistic conductors

We present a simple, first principles scheme for calculating mechanical properties of nonequilibrium bulk systems assuming an ideal ballistic distribution function for the electronic states described by the external voltage bias. This allows for fast calculations of estimates of the current-induced stresses inside bulk systems carrying a ballistic current. The stress is calculated using the Hellmann-Feynman theorem, and is in agreement with the derivative of the nonequilibrium free energy. We illustrate the theory and present results for one-dimensional (1D) metal chains. We find that the susceptibility of the yield stress to the applied voltage agrees with the ordering of break voltages among the metals found in experiments. In particular, gold is seen to be the most stable under strong current, while aluminum is the least stable.

[1]  David J Weber,et al.  Voltage-Induced Rearrangements in Atomic-Size Contacts. , 2020, Nano letters.

[2]  Victor Wen-zhe Yu,et al.  Siesta: Recent developments and applications. , 2020, The Journal of chemical physics.

[3]  P. Makk,et al.  Breaking the Quantum PIN Code of Atomic Synapses , 2020, Nano letters.

[4]  N. Papior,et al.  Nonequilibrium Bond Forces in Single-Molecule Junctions. , 2019, Nano letters.

[5]  N. Papior,et al.  Current-induced atomic forces in gated graphene nanoconstrictions , 2019, Physical Review B.

[6]  R. Hoffmann-Vogel Electromigration and the structure of metallic nanocontacts , 2017 .

[7]  K. Jacobsen,et al.  Dynamic breaking of a single gold bond , 2017, Nature Communications.

[8]  Howon Kim,et al.  Break voltage of Au single-atom contacts formed by junction closure , 2017 .

[9]  E. Meyhofer,et al.  Quantized thermal transport in single-atom junctions , 2017, Science.

[10]  C. Sabater,et al.  Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains , 2015, Beilstein journal of nanotechnology.

[11]  D. Stradi,et al.  Manipulating the voltage drop in graphene nanojunctions using a gate potential. , 2015, Physical chemistry chemical physics : PCCP.

[12]  A. Smogunov,et al.  Shot noise and magnetism of Pt atomic chains: Accumulation of points at the boundary , 2013, 1401.3983.

[13]  E. Scheer,et al.  A current-driven single-atom memory. , 2013, Nature nanotechnology.

[14]  S. Nayak,et al.  Aluminum conducts better than copper at the atomic scale: a first-principles study of metallic atomic wires. , 2012, ACS nano.

[15]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  M. Brandbyge,et al.  Blowing the fuse: Berry's phase and runaway vibrations in molecular conductors. , 2010, Nano letters.

[17]  M. Engelund,et al.  Atomistic theory for the damping of vibrational modes in mono-atomic gold chains , 2009, 0904.4627.

[18]  R. Ulbrich,et al.  Electronic transport on the nanoscale: ballistic transmission and Ohm's law. , 2009, Nano letters (Print).

[19]  J. Ferrer,et al.  Predictions for the formation of atomic chains in mechanically controllable break-junction experiments , 2006, cond-mat/0611624.

[20]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[21]  A. Sutton,et al.  A Maxwell relation for current-induced forces , 2004 .

[22]  J. M. Ruitenbeek,et al.  The high-bias stability of monatomic chains , 2003, cond-mat/0311439.

[23]  A. Sakai,et al.  High-bias conductance of atom-sized Al contacts , 2003 .

[24]  G. Rubio‐Bollinger,et al.  Observation of a parity oscillation in the conductance of atomic wires. , 2003, Physical review letters.

[25]  Jan M. van Ruitenbeek,et al.  Quantum properties of atomic-sized conductors , 2002, cond-mat/0208239.

[26]  M. Brandbyge,et al.  Current-voltage curves of atomic-sized transition metal contacts: an explanation of why Au is Ohmic and Pt is not. , 2002, Physical review letters.

[27]  J. M. Taylor,et al.  Origin of current-induced forces in an atomic gold wire: A first-principles study , 2002, cond-mat/0207401.

[28]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[29]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[30]  A. Sutton,et al.  Current-induced embrittlement of atomic wires. , 2001, Physical review letters.

[31]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[32]  T. N. Todorov,et al.  Local heating in ballistic atomic-scale contacts , 1998 .

[33]  Hiroshi Yasuda,et al.  Conductance of atomic-scale gold contacts under high-bias voltages , 1997 .

[34]  R. Landauer,et al.  Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988, IBM J. Res. Dev..

[35]  J. Gimzewski,et al.  Transition from the tunneling regime to point contact studied using scanning tunneling microscopy. , 1987, Physical review. B, Condensed matter.

[36]  Martin,et al.  Quantum-mechanical theory of stress and force. , 1985, Physical review. B, Condensed matter.

[37]  W. Marsden I and J , 2012 .