From Higher-Order to First-Order Rewriting

We show how higher-order rewriting may be encoded into first-order rewriting modulo an equational theory Ɛ. We obtain a characterization of the class of higher-order rewriting systems which can be encoded by first-order rewriting modulo an empty theory (that is, Ɛ = θ). This class includes of course the λ-calculus. Our technique does not rely on a particular substitution calculus but on a set of abstract properties to be verified by the substitution calculus used in the translation.

[1]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[2]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[3]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[4]  Nachum Dershowitz,et al.  Critical Pair Criteria for Completion , 1988, J. Symb. Comput..

[5]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[6]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[7]  Tobias Nipkow,et al.  Higher-order critical pairs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[8]  Randy Pollack,et al.  Closure Under Alpha-Conversion , 1994, TYPES.

[9]  Hans Zantema,et al.  Termination of Term Rewriting by Semantic Labelling , 1995, Fundam. Informaticae.

[10]  Alejandro Ríos,et al.  A Lambda-Calculus à la de Bruijn with Explicit Substitutions , 1995, PLILP.

[11]  Fairouz Kamareddine,et al.  A -calculus a La De Bruijn with Explicit Substitutions 7th International Conference on Programming Languages: Implementations, Logics and Programs, Plilp95, Lncs 982, Pages 45-62 , 1995 .

[12]  Pierre Lescanne,et al.  Explicit Substitutions with de Bruijn's Levels , 1995, RTA.

[13]  Claude Kirchner,et al.  Higher-order unification via explicit substitutions , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[14]  Pierre Lescanne,et al.  λν, a calculus of explicit substitutions which preserves strong normalisation , 1996, Journal of Functional Programming.

[15]  Claude Kirchner,et al.  Unification via Explicit Substitutions: The Case of Higher-Order Patterns , 1996, JICSLP.

[16]  A. César,et al.  A Left-Linear Variant of Lambda-Sigma , 1997, ALP/HOA.

[17]  Bruno Pagano Des calculs de substitution explicite et de leur application a la compilation et de leur application a la compilation des langages fonctionnels , 1998 .

[18]  Albert Rubio,et al.  The higher-order recursive path ordering , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[19]  Claude Kirchner,et al.  HOL-lambdasigma: An Intentional First-Order Expression of Higher-Order Logic , 1999, RTA.

[20]  Delia Kesner,et al.  Confluence of extensional and non-extensional lambda-calculi with explicit substitutions , 2000, Theor. Comput. Sci..

[21]  Claude Kirchner,et al.  Higher Order Unification via Explicit Substitutions , 2000, Inf. Comput..

[22]  Alejandro Ríos,et al.  A de Bruijn Notation for Higher-Order Rewriting , 2000, RTA.

[23]  Jürgen Giesl,et al.  Termination of term rewriting using dependency pairs , 2000, Theor. Comput. Sci..

[24]  Claude Kirchner,et al.  HOL-λσ: an intentional first-order expression of higher-order logic , 2001, Mathematical Structures in Computer Science.

[25]  Mizuhito Ogawa,et al.  Uniform Normalisation beyond Orthogonality , 2001, RTA.

[26]  René David,et al.  A lambda-calculus with explicit weakening and explicit substitution , 2001, Math. Struct. Comput. Sci..

[27]  Delia Kesner,et al.  Theory and applications of explicit substitutions: Introduction , 2001, Mathematical Structures in Computer Science.