A Dissipative Exponentially-Fitted Method for the Numerical Solution of the Schrödinger Equation
暂无分享,去创建一个
[1] Moawwad E. A. El-Mikkawy,et al. Families of Runge-Kutta-Nystrom Formulae , 1987 .
[2] M. Rizea,et al. A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .
[3] Charalampos Tsitouras. Dissipative high phase-lag order methods , 2001, Appl. Math. Comput..
[4] Majida Kobeissi,et al. On testing difference equations for the diatomic eigenvalue problem , 1988 .
[5] A. D. Raptis,et al. Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control , 1983 .
[6] John M. Blatt,et al. Practical points concerning the solution of the Schrödinger equation , 1967 .
[7] Veerle Fack,et al. Numerical methods for solving radial Schro¨dinger equations , 1989 .
[8] Veerle Fack,et al. Extended) Numerov method for computing eigenvalues of specific Schrodinger equations , 1987 .
[9] Tom E. Simos. Exponential fitted methods for the numerical integration of the Schrdinger equation , 1992 .
[10] T. E. Simos. Some New Four-Step Exponential-Fitting Methods for the Numerical Solution of the Radical Schrödinger Equation , 1991 .
[11] A. Konguetsof,et al. A generator of dissipative methods for the numerical solution of the Schrödinger equation , 2002 .
[12] Moawwad E. A. El-Mikkawy,et al. High-Order Embedded Runge-Kutta-Nystrom Formulae , 1987 .
[13] P. J. Prince,et al. Runge-Kutta-Nystrom triples , 1987 .
[14] M H Chawla,et al. A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .
[15] Tom E. Simos. Error analysis of exponential-fitted methods for the numerical solution of the one-dimensional Schrödinger equation , 1993 .
[16] A. D. Raptis,et al. A high order method for the numerical integration of the one-dimensional Schrödinger equation , 1984 .
[17] M. M. Chawla,et al. phase-lag for the integration of second order periodic initial-value problems. II: Explicit method , 1986 .
[18] Richard B. Bernstein,et al. Quantum Mechanical (Phase Shift) Analysis of Differential Elastic Scattering of Molecular Beams , 1960 .
[19] Alexander Dalgarno,et al. Thermal scattering of atoms by homonuclear diatomic molecules , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[20] J. W. Cooley,et al. An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields , 1961 .
[21] A. C. Allison,et al. The numerical solution of coupled differential equations arising from the Schrödinger equation , 1970 .
[22] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[23] Theodore E. Simos,et al. A Family of Numerov-type Exponentially Fitted Methods for the Numerical Integration of the Schrödinger Equation , 1997, Comput. Chem..
[24] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations , 1962 .
[25] Theodore E. Simos,et al. A Numerov-type Method for Computing Eigenvalues and Resonances of the Radial Schrödinger Equation , 1996, Comput. Chem..
[26] Majida Kobeissi,et al. A new variable step method for the numerical integration of the one-dimensional Schro¨dinger equation , 1988 .
[27] Y.-M. Cho. Topics in Theoretical Physics , 1997 .
[28] A. D. Raptis,et al. On the numerical solution of the Schrödinger equation , 1981 .
[29] T. E. Simos,et al. A Family Of Numerov-Type Exponentially Fitted Predictor-Corrector Methods For The Numerical Integrat , 1996 .
[30] T. E. Simos,et al. Embedded methods for the numerical solution of the Schrödinger equation , 1996 .
[31] T. E. Simos,et al. A sixth-order exponentially fitted method for the numerical solution of the radial , 1990 .
[32] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[33] Tom Lyche,et al. Chebyshevian multistep methods for ordinary differential equations , 1972 .
[34] G. Kroes,et al. The royal road to an energy-conserving predictor-corrector method , 1992 .
[35] A. D. Raptis,et al. Exponential and Bessel fitting methods for the numerical solution of the Schrödinger equation , 1987 .
[36] A. C. Allison,et al. Exponential-fitting methods for the numerical solution of the schrodinger equation , 1978 .
[37] J. Killingbeck,et al. Shooting methods for the Schrodinger equation , 1987 .
[38] Tom E. Simos,et al. A P-stable hybrid exponentially-fitted method for the numerical integration of the Schrödinger equation , 2000 .
[39] Ali El-Hajj,et al. On computing eigenvalues of the Schrodinger equation for symmetrical potentials , 1989 .
[40] T. E. Simos,et al. Eighth order methods for accurate computations for the Schrödinger equation , 1997 .
[41] J. Lambert,et al. Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .
[42] A. D. Raptis,et al. A variable step method for the numerical integration of the one-dimensional Schrödinger equation , 1985 .
[43] John P. Coleman,et al. Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .
[44] G. Herzberg,et al. Spectra of diatomic molecules , 1950 .
[45] T. E. Simos. A four-step method for the numerical solution of the Schro¨dinger equation , 1990 .
[46] G. Avdelas,et al. Embedded eighth order methods for the numerical solution of the Schrödinger equation , 1999 .