A Dissipative Exponentially-Fitted Method for the Numerical Solution of the Schrödinger Equation

A dissipative exponentially fitted method is constructed in this paper for the numerical integration of the Schrödinger equation. We note that the present method is a nonsymmetric multistep method (dissipative method) An application to the bound-states problem and the resonance problem of the radial Schrödinger equation indicates that the new method is more efficient (i.e. more accurate and more rapid) than the classical dissipative method and other well-known methods. Based on the new method and the method of Raptis and Allison(19) a new variable-step method is obtained. The application of the new variable-step method to the coupled differential equations arising from the Schrödinger equation indicates the efficiency of the new approach.

[1]  Moawwad E. A. El-Mikkawy,et al.  Families of Runge-Kutta-Nystrom Formulae , 1987 .

[2]  M. Rizea,et al.  A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .

[3]  Charalampos Tsitouras Dissipative high phase-lag order methods , 2001, Appl. Math. Comput..

[4]  Majida Kobeissi,et al.  On testing difference equations for the diatomic eigenvalue problem , 1988 .

[5]  A. D. Raptis,et al.  Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control , 1983 .

[6]  John M. Blatt,et al.  Practical points concerning the solution of the Schrödinger equation , 1967 .

[7]  Veerle Fack,et al.  Numerical methods for solving radial Schro¨dinger equations , 1989 .

[8]  Veerle Fack,et al.  Extended) Numerov method for computing eigenvalues of specific Schrodinger equations , 1987 .

[9]  Tom E. Simos Exponential fitted methods for the numerical integration of the Schrdinger equation , 1992 .

[10]  T. E. Simos Some New Four-Step Exponential-Fitting Methods for the Numerical Solution of the Radical Schrödinger Equation , 1991 .

[11]  A. Konguetsof,et al.  A generator of dissipative methods for the numerical solution of the Schrödinger equation , 2002 .

[12]  Moawwad E. A. El-Mikkawy,et al.  High-Order Embedded Runge-Kutta-Nystrom Formulae , 1987 .

[13]  P. J. Prince,et al.  Runge-Kutta-Nystrom triples , 1987 .

[14]  M H Chawla,et al.  A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .

[15]  Tom E. Simos Error analysis of exponential-fitted methods for the numerical solution of the one-dimensional Schrödinger equation , 1993 .

[16]  A. D. Raptis,et al.  A high order method for the numerical integration of the one-dimensional Schrödinger equation , 1984 .

[17]  M. M. Chawla,et al.  phase-lag for the integration of second order periodic initial-value problems. II: Explicit method , 1986 .

[18]  Richard B. Bernstein,et al.  Quantum Mechanical (Phase Shift) Analysis of Differential Elastic Scattering of Molecular Beams , 1960 .

[19]  Alexander Dalgarno,et al.  Thermal scattering of atoms by homonuclear diatomic molecules , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  J. W. Cooley,et al.  An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields , 1961 .

[21]  A. C. Allison,et al.  The numerical solution of coupled differential equations arising from the Schrödinger equation , 1970 .

[22]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[23]  Theodore E. Simos,et al.  A Family of Numerov-type Exponentially Fitted Methods for the Numerical Integration of the Schrödinger Equation , 1997, Comput. Chem..

[24]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[25]  Theodore E. Simos,et al.  A Numerov-type Method for Computing Eigenvalues and Resonances of the Radial Schrödinger Equation , 1996, Comput. Chem..

[26]  Majida Kobeissi,et al.  A new variable step method for the numerical integration of the one-dimensional Schro¨dinger equation , 1988 .

[27]  Y.-M. Cho Topics in Theoretical Physics , 1997 .

[28]  A. D. Raptis,et al.  On the numerical solution of the Schrödinger equation , 1981 .

[29]  T. E. Simos,et al.  A Family Of Numerov-Type Exponentially Fitted Predictor-Corrector Methods For The Numerical Integrat , 1996 .

[30]  T. E. Simos,et al.  Embedded methods for the numerical solution of the Schrödinger equation , 1996 .

[31]  T. E. Simos,et al.  A sixth-order exponentially fitted method for the numerical solution of the radial , 1990 .

[32]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[33]  Tom Lyche,et al.  Chebyshevian multistep methods for ordinary differential equations , 1972 .

[34]  G. Kroes,et al.  The royal road to an energy-conserving predictor-corrector method , 1992 .

[35]  A. D. Raptis,et al.  Exponential and Bessel fitting methods for the numerical solution of the Schrödinger equation , 1987 .

[36]  A. C. Allison,et al.  Exponential-fitting methods for the numerical solution of the schrodinger equation , 1978 .

[37]  J. Killingbeck,et al.  Shooting methods for the Schrodinger equation , 1987 .

[38]  Tom E. Simos,et al.  A P-stable hybrid exponentially-fitted method for the numerical integration of the Schrödinger equation , 2000 .

[39]  Ali El-Hajj,et al.  On computing eigenvalues of the Schrodinger equation for symmetrical potentials , 1989 .

[40]  T. E. Simos,et al.  Eighth order methods for accurate computations for the Schrödinger equation , 1997 .

[41]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[42]  A. D. Raptis,et al.  A variable step method for the numerical integration of the one-dimensional Schrödinger equation , 1985 .

[43]  John P. Coleman,et al.  Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .

[44]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[45]  T. E. Simos A four-step method for the numerical solution of the Schro¨dinger equation , 1990 .

[46]  G. Avdelas,et al.  Embedded eighth order methods for the numerical solution of the Schrödinger equation , 1999 .