Canonical representation of the Yager’s classes of fuzzy implications

The aim of this work is to study an interval extension of the Yager’s classes of implications based on the canonical constructor. Focused on the Yager implication, such construction preserves similar and extra properties of fuzzy implications, also aggregating the correctness and optimality criteria.

[1]  Ronald R. Yager,et al.  On some new classes of implication operators and their role in approximate reasoning , 2004, Inf. Sci..

[2]  Glad Deschrijver,et al.  A representation of t-norms in interval-valued L-fuzzy set theory , 2008, Fuzzy Sets Syst..

[3]  Ronald R. Yager,et al.  Level sets and the extension principle for interval valued fuzzy sets and its application to uncertainty measures , 2008, Inf. Sci..

[4]  Joan Torrens,et al.  On a new class of fuzzy implications: h-Implications and generalizations , 2011, Inf. Sci..

[5]  M. H. van Emden,et al.  Interval arithmetic: From principles to implementation , 2001, JACM.

[6]  Benjamín R. C. Bedregal,et al.  Xor-Implications and E-Implications: Classes of Fuzzy Implications Based on Fuzzy Xor , 2009, LSFA.

[7]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[8]  J. Balasubramaniam,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[9]  Benjamín R. C. Bedregal,et al.  Interval additive generators of interval t-norms and interval t-conorms , 2011, Inf. Sci..

[10]  Ch. Dujet,et al.  Force implication: a new approach to human reasoning , 1995 .

[11]  Yun Shi,et al.  On the First Place Antitonicity in QL-implications , 2008, EUSFLAT Conf..

[12]  Benjamín R. C. Bedregal,et al.  Interval Valued QL-Implications , 2007, WoLLIC.

[13]  Benjamín R. C. Bedregal,et al.  Interval Valued Versions of T-Conorms, Fuzzy Negations and Fuzzy Implications , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[14]  Ramon E. Moore,et al.  Interval analysis and fuzzy set theory , 2003, Fuzzy Sets Syst..

[15]  Michal Baczynski,et al.  Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.

[16]  Weldon A. Lodwick Reliable Computing: Special Issue on the Linkages between Interval Mathematics and Fuzzy Set Theory , 2002, Reliab. Comput..

[17]  Joan Torrens,et al.  A Survey on Fuzzy Implication Functions , 2007, IEEE Transactions on Fuzzy Systems.

[18]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[19]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[20]  Benjamín R. C. Bedregal,et al.  An Approach to Interval-Valued R-Implications and Automorphisms , 2009, IFSA/EUSFLAT Conf..

[21]  Benjamín R. C. Bedregal,et al.  On interval fuzzy S-implications , 2010, Inf. Sci..

[22]  R. B. Kearfott,et al.  Applications of interval computations , 1996 .

[23]  Renata Reiser,et al.  Interval Valued D-Implications , 2009 .

[24]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[25]  Vladik Kreinovich,et al.  A new class of fuzzy implications. Axioms of fuzzy implication revisited , 1998, Fuzzy Sets Syst..

[26]  Humberto Bustince,et al.  Automorphisms, negations and implication operators , 2003, Fuzzy Sets Syst..

[27]  J. Balasubramaniam,et al.  Contrapositive symmetrisation of fuzzy implications - Revisited , 2006, Fuzzy Sets Syst..

[28]  Benjamín R. C. Bedregal,et al.  Formal Aspects of Correctness and Optimality of Interval Computations , 2006, Formal Aspects of Computing.