CFD-based application of the Nyquist criterion to thermo-acoustic instabilities

A novel approach for the analysis of self-excited instabilities in thermo-acoustic systems is proposed. Combining computational fluid dynamics with low-order acoustic modeling, the open-loop transfer function of the system under investigation is computed. The system eigenmodes and the linear stability characteristics are then deduced from a Nyquist plot. The method is suitable for systems where - due to geometrical complexities or non-compact regions of heat release - a low-order formulation is not appropriate or not available. Explicit knowledge of the frequency response or the transfer matrix of the heat source is not required. Further advantages of the new approach are discussed in the paper. To establish proof of concept, the method is validated against a simple model of a Rijke tube. Over the frequency range considered, frequencies and growth rates of stable as well as unstable eigenmodes are predicted accurately. The new method, combining flow simulation, low-order acoustic modeling and control theory, makes possible a comprehensive analysis of acoustic stability behavior of complex thermo-acoustic systems at comparatively modest computational cost.

[1]  Franck Nicoud,et al.  Numerical assessment of thermo‐acoustic instabilities in gas turbines , 2005 .

[2]  Werner Krebs,et al.  Thermoacoustic analysis of annular combustor , 1999 .

[3]  Tim Lieuwen,et al.  Modeling Premixed Combustion-Acoustic Wave Interactions: A Review , 2003 .

[4]  B. Chu On the generation of pressure waves at a plane flame front , 1953 .

[5]  Christian Oliver Paschereit,et al.  Constructive and Destructive Interference of Acoustic and Entropy Waves in a Premixed Combustor with a Choked Exit , 2001 .

[6]  F. Nicoud,et al.  Acoustic modes in combustors with complex impedances and multidimensional active flames , 2007 .

[7]  Tim Lieuwen,et al.  Combustion Instabilities In Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling , 2006 .

[8]  Giacomo M. Bisio,et al.  Sondhauss and Rijke oscillations—thermodynamic analysis, possible applications and analogies , 1999 .

[9]  F. Culick,et al.  REDUCED-ORDER MODELING AND DYNAMICS OF NONLINEAR ACOUSTIC WAVES IN A COMBUSTION CHAMBER , 2005 .

[10]  Christian Oliver Paschereit,et al.  Investigation of the Thermoacoustic Characteristics of a Lean Premixed Gas Turbine Burner , 1998 .

[11]  Wolfgang Polifke,et al.  Impact of Fuel Supply Impedance on Combustion Stability of Gas Turbines , 2008 .

[12]  Wolfgang Polifke,et al.  Order and Realizability of Impulse Response Filters for Accurate Identification of Acoustic Multi-Ports from Transient Combust. & FlameD , 2003 .

[13]  Bruno Schuermans,et al.  Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results , 1999 .

[14]  T. Sattelmayer,et al.  A novel method for the computation of the linear stability of combustors , 2003 .

[15]  A. Putnam Combustion-Driven Oscillations in Industry , 1971 .

[16]  T. Poinsot,et al.  Comparison and extension of methods for acoustic identification of burners , 2005 .

[17]  O. Jacobs,et al.  Introduction to Control Theory , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Klaus Jänich,et al.  Analysis für Physiker und Ingenieure , 1983 .

[19]  Parviz Moin,et al.  Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow , 2006, J. Comput. Phys..

[20]  Bruno Schuermans,et al.  Measurement of Transfer Matrices and Source Terms of Premixed Flames , 1999 .

[21]  Wolfgang Polifke,et al.  Order and Realisability of Impulse Response Filters for Accurate Identification of Acoustical Multi-ports from Transient CFD , 2004 .

[22]  H. Merk An analysis of unstable combustion of premixed gases , 1957 .

[23]  Konstantin I. Matveev,et al.  Energy consideration of the nonlinear effects in a Rijke tube , 2003 .

[24]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[25]  A. Dowling THE CALCULATION OF THERMOACOUSTIC OSCILLATIONS , 1995 .

[26]  J. Anthoine,et al.  Advances in Aeroacoustics and Applications , 2004 .

[27]  C. O. Paschereit,et al.  RECONSTRUCTION OF ACOUSTIC TRANSFER MATRICES BY INSTATIONARY COMPUTATIONAL FLUID DYNAMICS , 2001 .

[28]  Jacob J. Keller Thermoacoustic oscillations in combustion chambers of gas turbines , 1995 .

[29]  Bruno Schuermans,et al.  GT 2004-53831 A DETAILED ANALYSIS OF THERMOACOUSTIC INTERACTION MECHANISMS IN A TURBULENT PREMIXED FLAME , 2004 .

[30]  S. Candel,et al.  A unified model for the prediction of laminar flame transfer functions: comparisons between conical and V-flame dynamics , 2003 .

[31]  C.-C. Hantschk,et al.  NUMERICAL SIMULATION OF SELF-EXCITED THERMOACOUSTIC INSTABILITIES IN A RIJKE TUBE , 1999 .

[32]  P. L. Rijke Notiz über eine neue Art, die in einer an beiden Enden offenen Röhre enthaltene Luft in Schwingungen zu versetzen , 1859 .

[33]  Ann P. Dowling,et al.  Transfer Function Calculations for Aeroengine Combustion Oscillations , 2005 .

[34]  M. Lighthill,et al.  The response of laminar skin friction and heat transfer to fluctuations in the stream velocity , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  S. Candel,et al.  A review of active control of combustion instabilities , 1993 .

[36]  Louis Vessot King,et al.  On the Convection of Heat from Small Cylinders in a Stream of Fluid: Determination of the Convection Constants of Small Platinum Wires with Applications to Hot-Wire Anemometry , 1914 .

[37]  Jerome Hebrard,et al.  Spatial development of turbulent flow within a heated duct , 2005 .

[38]  F. Nicoud,et al.  Flow forcing techniques for numerical simulation of combustion instabilities , 2002 .

[39]  Ann P. Dowling,et al.  Low-Order Modelling of Thermoacoustic Limit Cycles , 2004 .

[40]  T. Sattelmayer,et al.  Assessment of methods for the computation of the linear stability of combustors , 2003 .

[41]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[42]  Alexis Giauque Fonctions de transfert de flamme et énergies des pertubations dans les écoulements réactifs , 2007 .

[43]  T. Poinsot,et al.  System identification of a large-scale swirled partially premixed combustor using LES and measurements , 2005 .

[44]  John William Strutt,et al.  Scientific Papers: The Explanation of certain Acoustical Phenomena , 2009 .

[45]  T. Sattelmayer,et al.  Time Domain Simulation of Combustion Instabilities in Annular Combustors , 2003 .

[46]  Clifton T. Wall Numerical methods for large eddy simulation of acoustic combustion instabilities , 2005 .

[47]  Shin-ichi Sato,et al.  Annoyance of noise stimuli in relation to the spatial factors extracted from the interaural cross-correlation function , 2004 .

[48]  Wolfgang Polifke,et al.  A MODEL FOR THE THERMOACOUSTIC RESPONSE OF A PREMIXED SWIRL BURNER, PART II: THE FLAME RESPONSE , 2004 .

[49]  J. Uhlig R. Zurmühl, Praktische Mathematik für Ingenieure und Physiker. XVI + 561 S. m. 124 Abb. Berlin/Heidelberg/New York 1965. Springer-Verlag. Preis geb. DM 37,50 , 1966 .

[50]  Bruno Schuermans,et al.  Modeling and control of thermoacoustic instabilities , 2003 .