Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales.

Root systems of most land plants form arbuscular mycorrhizal (AM) symbioses in the field, and these contribute to nutrient uptake. AM roots have two pathways for nutrient absorption, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. New physiological and molecular evidence shows that for phosphorus the mycorrhizal pathway (MP) is operational regardless of plant growth responses (positive or negative). Amounts delivered cannot be determined from plant nutrient contents because when responses are negative the contribution of the direct pathway (DP) is reduced. Nitrogen (N) is also delivered to roots via an MP, but the contribution to total N requirement and the costs to the plant are not clear. The functional interplay between activities of the DP and MP has important implications for consideration of AM symbioses in ecological, agronomic, and evolutionary contexts.

[1]  P. Tinker,et al.  Phosphate flow into mycorrhizal roots , 1973 .

[2]  J. Raven,et al.  NITROGEN ASSIMILATION AND TRANSPORT IN VASCULAR LAND PLANTS IN RELATION TO INTRACELLULAR pH REGULATION , 1976 .

[3]  Sally E. Smith,et al.  MYCORRHIZAS OF AUTOTROPHIC HIGHER PLANTS , 1980 .

[4]  R. Leonard,et al.  INTERACTION OF LIGHT INTENSITY AND SOIL TEMPERATURE WITH PHOSPHORUS INHIBITION OF VESICULAR-ARBUSCULAR MYCORRHIZA FORMATION , 1982 .

[5]  L. K. Porter,et al.  HYPHAL UPTAKE AND TRANSPORT OF NITROGEN FROM TWO 15N‐LABELLED SOURCES BY GLOMUS MOSSEAE, A VESICULAR‐ARBUSCULAR MYCORRHIZAL FUNGUS * , 1983 .

[6]  G. Bethlenfalvay,et al.  Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: The effect of phosphorus on host plant‐endophyte interactions , 1983 .

[7]  D. Nicholas,et al.  ACTIVITY OF GLUTAMINE SYNTHETASE AND GLUTAMATE DEHYDROGENASE IN TRIFOLIUM SUBTERRANEUM L. AND ALLIUM CEPA L: EFFECTS OF MYCORRHIZAL INFECTION AND PHOSPHATE NUTRITION , 1985 .

[8]  L. Abbott,et al.  EFFECTS OF PHOSPHATE SUPPLY AND INOCULATION WITH A VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGUS ON THE DEATH OF THE ROOT CORTEX OF WHEAT, RAPE AND SUBTERRANEAN CLOVER , 1986 .

[9]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[10]  J. W. Hendrix,et al.  The mycorrhizal fungus Glomus macrocarpum as a cause of tobacco stunt disease , 1986 .

[11]  F. A. Smith,et al.  EFFECTS OF MYCORRHIZAL INFECTION ON PLANT GROWTH, NITROGEN AND PHOSPHORUS NUTRITION IN GLASSHOUSE‐GROWN ALLIUM CEPAL. , 1986 .

[12]  M. Tester,et al.  THE DEVELOPMENT OF MYCORRHIZAL ROOT SYSTEMS IN TRIFOLIUM SUBTERRANEUM L.: GROWTH OF ROOTS AND THE UNIFORMITY OF SPATIAL DISTRIBUTION OF MYCORRHIZAL INFECTION UNITS IN YOUNG PLANTS , 1986 .

[13]  S. Smith,et al.  Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition. , 1988, The New phytologist.

[14]  V. Gianinazzi-Pearson,et al.  Physiological Interactions Between Symbionts in Vesicular-Arbuscular Mycorrhizal Plants , 1988 .

[15]  H. Marschner,et al.  EFFECT OF VA MYCORRHIZAL FUNGI AND RHIZOSPHERE MICROORGANISMS ON ROOT AND SHOOT MORPHOLOGY, GROWTH AND WATER RELATIONS IN MAIZE , 1990 .

[16]  V. Gianinazzi-Pearson,et al.  Phosphate Uptake and Arbuscular Activity in Mycorrhizal Allium cepa L.: Effects of Photon Irradiance and Phosphate Nutrition , 1990 .

[17]  F. A. Smith,et al.  Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. , 1990, The New phytologist.

[18]  Sally E. Smith,et al.  Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V, Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces ? , 1991 .

[19]  H. Marschner,et al.  Phosphorus depletion and pH decrease at the root–soil and hyphae–soil interfaces of VA mycorrhizal white clover fertilized with ammonium , 1991 .

[20]  A. Johansen,et al.  Hyphal transport of 15 N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. , 1992, The New phytologist.

[21]  I. Jakobsen,et al.  External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. , 1992 .

[22]  H. Marschner,et al.  Water and nutrient translocation by hyphae of Glomus mosseae , 1992 .

[23]  A. Johansen,et al.  External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. III: Hyphal transport of 32P and 15N , 1993 .

[24]  A. P. Schwab,et al.  Mycorrhizal activity in warm- and cool-season grasses: variation in nutrient-uptake strategies , 1994 .

[25]  J. Barea,et al.  Improved nitrogen uptake and transport from 15N‐labelled nitrate by external hyphae of arbuscular mycorrhiza under water‐stressed conditions , 1994 .

[26]  B. Guo,et al.  A mycorrhizal pathogen (Glomus macrocarpum Tul. & Tul.) of tobacco: effects of long- and short-term cropping on the mycorrhizal fungal community and stunt disease , 1994 .

[27]  Sabine Ravnskov,et al.  Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant , 1995 .

[28]  A. Watkinson,et al.  Multi-functionality and biodiversity in arbuscular mycorrhizas. , 1995, Trends in ecology & evolution.

[29]  H. Marschner,et al.  Role of Arbuscular Mycorrhizal Fungi in Uptake of Phosphorus and Nitrogen From Soil , 1995 .

[30]  M. J. Harrison,et al.  A phosphate transporter from the mycorrhizal fungus Glomus versiforme , 1995, Nature.

[31]  D. Read,et al.  Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure , 1995 .

[32]  B. Bago,et al.  Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. , 1996, The New phytologist.

[33]  A. Johansen,et al.  Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices , 1996 .

[34]  F. A. Smith,et al.  Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. , 1997, The New phytologist.

[35]  J. Graham,et al.  Functioning of mycorrhizal associations along the mutualism–parasitism continuum* , 1997 .

[36]  B. Bago,et al.  Changes in the rhizospheric pH induced by arbuscular mycorrhiza formation in onion (Allium cepa L.) , 1997 .

[37]  B. Persson,et al.  Functional analysis and cell-specific expression of a phosphate transporter from tomato , 1998, Planta.

[38]  B. Bago,et al.  Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi , 1998 .

[39]  E. Schmelzer,et al.  Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza. , 1998, Molecular plant-microbe interactions : MPMI.

[40]  D. Schachtman,et al.  Phosphorus Uptake by Plants: From Soil to Cell , 1998, Plant physiology.

[41]  I. Jakobsen Transport of Phosphorus and Carbon in Arbuscular Mycorrhizas , 1999 .

[42]  T. Ezawa,et al.  Polyphosphates in Intraradical and Extraradical Hyphae of an Arbuscular Mycorrhizal Fungus, Gigaspora margarita , 1999, Applied and Environmental Microbiology.

[43]  R. Koide Functional complementarity in the arbuscular mycorrhizal symbiosis. , 2000 .

[44]  A. Hodge,et al.  An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. , 2000, The New phytologist.

[45]  I. Jakobsen,et al.  Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula , 2000 .

[46]  Martin Guttenberger,et al.  Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots , 2000, Planta.

[47]  J. Barea,et al.  The plasma membrane H+-ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae , 2000, Current Genetics.

[48]  T. Boller,et al.  Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi , 2000 .

[49]  V. Gianinazzi-Pearson,et al.  Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco , 2000, Planta.

[50]  A. Hodge,et al.  An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material , 2001, Nature.

[51]  Y. Shachar-Hill,et al.  Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? , 2001, The New phytologist.

[52]  T. Cavagnaro,et al.  Morphology of arbuscular mycorrhizas is influenced by fungal identity , 2001 .

[53]  M. Solaiman,et al.  Phosphate efflux from intraradical hyphae of Gigaspora margarita in vitro and its implication for phosphorus translocation , 2001 .

[54]  H. Hawkins,et al.  Reduced15N-nitrogen Transport Through Arbuscular Mycorrhizal Hyphae to Triticum aestivum L. Supplied with Ammonium vs. Nitrate Nutrition , 2001 .

[55]  A. Hodge Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. , 2001, The New phytologist.

[56]  M. J. Harrison,et al.  A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.004861. , 2002, The Plant Cell Online.

[57]  F. Krajinski,et al.  Mtha1, a Plasma Membrane H+-ATPase Gene from Medicago truncatula, Shows Arbuscule-Specific Induced Expression in Mycorrhizal Tissue , 2002 .

[58]  Yong-guan Zhu,et al.  Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil , 2003, Mycorrhiza.

[59]  W. Frommer,et al.  Metabolic engineering of plants: the role of membrane transport. , 2002, Metabolic engineering.

[60]  H. Wallander,et al.  Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment , 2002 .

[61]  J. Jansa,et al.  Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize , 2003 .

[62]  Sandra Díaz,et al.  The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity , 2003 .

[63]  M. Ryan,et al.  Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy study. , 2003, The New phytologist.

[64]  J. Klironomos,et al.  VARIATION IN PLANT RESPONSE TO NATIVE AND EXOTIC ARBUSCULAR MYCORRHIZAL FUNGI , 2003 .

[65]  T. Cavagnaro,et al.  Growth and phosphorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis. , 2003, The New phytologist.

[66]  J. Pérez‐Moreno,et al.  Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? , 2003, The New phytologist.

[67]  T. Davies,et al.  Restricted spatial expression of a high-affinity phosphate transporter in potato roots , 2003, Journal of Cell Science.

[68]  I. Jakobsen,et al.  Mycorrhizal Fungi Can Dominate Phosphate Supply to Plants Irrespective of Growth Responses1 , 2003, Plant Physiology.

[69]  W. McDowell,et al.  Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution , 2004 .

[70]  A. Johansen,et al.  Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate , 1993, Biology and Fertility of Soils.

[71]  I. Jakobsen,et al.  Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes , 2003, Plant and Soil.

[72]  M. St-Arnaud,et al.  Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. , 2004, Canadian journal of microbiology.

[73]  J. Kirkegaard,et al.  Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi , 2005, Plant and Soil.

[74]  N. Amrhein,et al.  Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  T. Cavagnaro,et al.  Inoculum type does not affect overall resistance of an arbuscular mycorrhiza-defective tomato mutant to colonisation but inoculation does change competitive interactions with wild-type tomato. , 2004, The New phytologist.

[76]  P. Hansen,et al.  Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo31 P NMR spectroscopy. , 2004, The New phytologist.

[77]  M. Vestberg,et al.  High functional diversity within species of arbuscular mycorrhizal fungi. , 2004, The New phytologist.

[78]  A. Johansen,et al.  Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi , 2000, Plant and Soil.

[79]  S. Dickson The Arum-Paris continuum of mycorrhizal symbioses. , 2004, The New phytologist.

[80]  M. Parniske Molecular genetics of the arbuscular mycorrhizal symbiosis. , 2004, Current opinion in plant biology.

[81]  J. Graham,et al.  Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi , 2000, Plant and Soil.

[82]  Melanie D. Jones,et al.  Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms? , 2004 .

[83]  T. Ezawa,et al.  P metabolism and transport in AM fungi , 2002, Plant and Soil.

[84]  I. Jakobsen Hyphal fusion to plant species connections - giant mycelia and community nutrient flow. , 2004, The New phytologist.

[85]  L. Abbott,et al.  The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use , 1992, Plant and Soil.

[86]  J. Graham,et al.  Is there a role for arbuscular mycorrhizal fungi in production agriculture? , 2004, Plant and Soil.

[87]  A. Rae,et al.  Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates. , 2004, Functional plant biology : FPB.

[88]  I. Jakobsen,et al.  Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake , 2004 .

[89]  S. A. Barber,et al.  Sensitivity of simulated phosphorus uptake to parameters used by a mechanistic-mathematical model , 1983, Plant and Soil.

[90]  P. Lammers,et al.  The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. , 2005, The New phytologist.

[91]  P. Marschner,et al.  Wheat Responses to Arbuscular Mycorrhizal Fungi in a Highly Calcareous Soil Differ from those of Clover, and Change with Plant Development and P supply , 2005, Plant and Soil.

[92]  B. Wang,et al.  Phylogenetic distribution and evolution of mycorrhizas in land plants , 2006, Mycorrhiza.

[93]  K. Yano,et al.  Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied , 2005 .

[94]  M. J. Harrison,et al.  Signaling in the arbuscular mycorrhizal symbiosis. , 2005, Annual review of microbiology.

[95]  J. Six,et al.  Arbuscular Mycorrhizas, Microbial Communities, Nutrient Availability, and Soil Aggregates in Organic Tomato Production , 2006, Plant and Soil.

[96]  R. Balestrini,et al.  The interface compartment in arbuscular mycorrhizae: A special type of plant cell wall? , 2005 .

[97]  Guohua Xu,et al.  The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. , 2005, The Plant journal : for cell and molecular biology.

[98]  J. Bever,et al.  Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. , 2005, The New phytologist.

[99]  P. Bonfante,et al.  Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection[W] , 2005, The Plant Cell Online.

[100]  I. Jakobsen,et al.  Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. , 2005, The New phytologist.

[101]  Peter J. Lammers,et al.  Nitrogen transfer in the arbuscular mycorrhizal symbiosis , 2005, Nature.

[102]  Per Ambus,et al.  Enzymatic Evidence for the Key Role of Arginine in Nitrogen Translocation by Arbuscular Mycorrhizal Fungi1[OA] , 2006, Plant Physiology.

[103]  Huiying Li,et al.  Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. , 2006, The New phytologist.

[104]  M. González-Guerrero,et al.  GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. , 2006, Fungal genetics and biology : FG & B.

[105]  M. V. D. van der Heijden,et al.  Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. , 2006, Ecology.

[106]  S. Declerck,et al.  Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. , 2006, Environmental microbiology.

[107]  E. Bonari,et al.  Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. , 2006, The New phytologist.

[108]  U. Paszkowski A journey through signaling in arbuscular mycorrhizal symbioses 2006. , 2006, The New phytologist.

[109]  D. Schachtman,et al.  Localization of proton-ATPase genes expressed in arbuscular mycorrhizal tomato plants , 2007, Mycorrhiza.

[110]  A. Fitter What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. , 2006, The New phytologist.

[111]  D. Janos Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas , 2007, Mycorrhiza.

[112]  M. Bucher Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. , 2007, The New phytologist.

[113]  Luisa Lanfranco,et al.  Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. , 2007, Molecular plant-microbe interactions : MPMI.

[114]  M. Ryan,et al.  Relative amounts of soluble and insoluble forms of phosphorus and other elements in intraradical hyphae and arbuscules of arbuscular mycorrhizas. , 2007, Functional plant biology : FPB.

[115]  Guohua Xu,et al.  Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. , 2007, Journal of experimental botany.

[116]  S. Dickson,et al.  Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? , 2007, Mycorrhiza.

[117]  Maria J Harrison,et al.  Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. , 2007, Plant, cell & environment.

[118]  M. J. Harrison,et al.  A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis , 2007, Proceedings of the National Academy of Sciences.

[119]  N. Callewaert,et al.  Lyso-Phosphatidylcholine Is a Signal in the Arbuscular Mycorrhizal Symbiosis , 2007, Science.

[120]  M. Burger,et al.  Roots, nitrogen transformations, and ecosystem services. , 2008, Annual review of plant biology.

[121]  Huiying Li,et al.  Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? , 2008, The New phytologist.

[122]  L. Fraser,et al.  A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. , 2007, The New phytologist.

[123]  P. Bonfante,et al.  Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. , 2008, Trends in plant science.

[124]  J. Jansa,et al.  Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? , 2008, The New phytologist.

[125]  I. Jakobsen,et al.  Underground resource allocation between individual networks of mycorrhizal fungi. , 2008, The New phytologist.

[126]  Huiying Li,et al.  Naturally occurring arbuscular mycorrhizal fungi can replace direct P uptake by wheat when roots cannot access added P fertiliser. , 2008, Functional plant biology : FPB.

[127]  D. Wipf,et al.  Characterization of an Amino Acid Permease from the Endomycorrhizal Fungus Glomus mosseae1[W] , 2008, Plant Physiology.

[128]  J. Graham Scaling-up evaluation of field functioning of arbuscular mycorrhizal fungi. , 2008, The New phytologist.

[129]  Martin Parniske,et al.  Arbuscular mycorrhiza: the mother of plant root endosymbioses , 2008, Nature Reviews Microbiology.

[130]  P. Bonfante,et al.  Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both Medicago truncatula and Daucus carota[W] , 2008, The Plant Cell Online.

[131]  Marek Dynowski,et al.  A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi1 , 2009, Plant Physiology.

[132]  Sally E. Smith,et al.  Arsenic uptake and toxicity in plants: integrating mycorrhizal influences , 2010, Plant and Soil.

[133]  E. Grace,et al.  More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. , 2009, The New phytologist.

[134]  M. Tester,et al.  Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. , 2009, The New phytologist.

[135]  F. A. Smith,et al.  Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway. , 2009, The New phytologist.

[136]  J. E. Hooker,et al.  Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa , 2010, Mycorrhiza.

[137]  M. J. Harrison,et al.  Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in Medicago truncatula Roots during Arbuscular Mycorrhizal Symbiosis1[W][OA] , 2009, Plant Physiology.

[138]  A. Hodge,et al.  Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. , 2009, The New phytologist.

[139]  I. Jakobsen,et al.  Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. , 2009, The New phytologist.

[140]  E. Grace,et al.  Deciphering the Arbuscular Mycorrhizal Pathway of P Uptake in Non-responsive Plant Species , 2009 .

[141]  T. Ezawa,et al.  Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. , 2010, The New phytologist.

[142]  Y. Poirier,et al.  Regulation of phosphate starvation responses in plants: signaling players and cross-talks. , 2010, Molecular plant.

[143]  J. Sperry,et al.  Tansley Review , 2022 .

[144]  P. May,et al.  Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. , 2010, Molecular plant-microbe interactions : MPMI.

[145]  L. Jackson,et al.  Tomato root transcriptome response to a nitrogen-enriched soil patch , 2010, BMC Plant Biology.

[146]  T. Boller,et al.  Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency , 2010 .

[147]  Guohua Xu,et al.  Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. , 2010, Physiologia plantarum.

[148]  J. Facelli,et al.  Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. , 2010, The New phytologist.

[149]  S. Tyerman,et al.  Channel-Like Characteristics of the Low-Affinity Barley Phosphate Transporter PHT1;6 When Expressed in Xenopus Oocytes1[W][OA] , 2010, Plant Physiology.

[150]  O. Alizadeh,et al.  Mycorrhizal Symbiosis , 1986, Forest Science.