The potential advantages of digital PCR for clinical virology diagnostics

Digital PCR (dPCR), a new nucleic acid amplification technology, offers several potential advantages over real-time or quantitative PCR (qPCR), the current workhorse of clinical molecular virology diagnostics. Several studies have demonstrated dPCR assays for human cytomegalovirus or HIV, which give more precise and reproducible results than qPCR assays without sacrificing sensitivity. Here we review the literature comparing dPCR and qPCR performance in viral molecular diagnostic assays and offer perspective on the future of dPCR in clinical virology diagnostics.

[1]  Jesse H. Arbuckle,et al.  Review, part 1: Human herpesvirus‐6‐basic biology, diagnostic testing, and antiviral efficacy , 2010, Journal of medical virology.

[2]  Jeff Mellen,et al.  High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number , 2011, Analytical chemistry.

[3]  A. Heath,et al.  An international collaborative study to establish a replacement World Health Organization International Standard for human immunodeficiency virus 1 RNA nucleic acid assays , 2008, Vox sanguinis.

[4]  T. Stevens-Ayers,et al.  Optimization of Quantitative Detection of Cytomegalovirus DNA in Plasma by Real-Time PCR , 2004, Journal of Clinical Microbiology.

[5]  P. Griffiths,et al.  Human Herpesvirus 6 Chromosomal Integration in Immunocompetent Patients Results in High Levels of Viral DNA in Blood, Sera, and Hair Follicles , 2006, Journal of Clinical Microbiology.

[6]  Jesse H. Arbuckle,et al.  The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro , 2010, Proceedings of the National Academy of Sciences.

[7]  K. Kinzler,et al.  Digital PCR. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  K. Jerome,et al.  Viral diagnostics in the era of digital polymerase chain reaction. , 2013, Diagnostic microbiology and infectious disease.

[9]  Keith R. Jerome,et al.  Clinical Utility of Droplet Digital PCR for Human Cytomegalovirus , 2014, Journal of Clinical Microbiology.

[10]  C. Hall,et al.  Diagnostic assays for active infection with human herpesvirus 6 (HHV-6). , 2010, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[11]  A. Caliendo,et al.  Factors Contributing to Variability of Quantitative Viral PCR Results in Proficiency Testing Samples: a Multivariate Analysis , 2011, Journal of Clinical Microbiology.

[12]  A. Phillips,et al.  Plasma HIV-1 RNA detection below 50 copies/ml and risk of virologic rebound in patients receiving highly active antiretroviral therapy. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[13]  A. Limaye,et al.  Marked Variability of BK Virus Load Measurement Using Quantitative Real-Time PCR among Commonly Used Assays , 2008, Journal of Clinical Microbiology.

[14]  K. Jerome,et al.  Comparison of methods for extraction of viral DNA from cellular specimens. , 2009, Diagnostic microbiology and infectious disease.

[15]  B. Pinsky,et al.  Clinical Significance of Low Cytomegalovirus DNA Levels in Human Plasma , 2012, Journal of Clinical Microbiology.

[16]  M. Nikiforova,et al.  Multicenter Comparison of Different Real-Time PCR Assays for Quantitative Detection of Epstein-Barr Virus , 2007, Journal of Clinical Microbiology.

[17]  Jesse H. Arbuckle,et al.  The molecular biology of human herpesvirus-6 latency and telomere integration. , 2011, Microbes and infection.

[18]  Benjamin J. Hindson,et al.  Evaluation of a Droplet Digital Polymerase Chain Reaction Format for DNA Copy Number Quantification , 2011, Analytical chemistry.

[19]  Stephen A. Bustin,et al.  A-Z of Quantitative PCR , 2004 .

[20]  Fumio Inagaki,et al.  Molecular quantification of environmental DNA using microfluidics and digital PCR. , 2012, Systematic and applied microbiology.

[21]  Z. Gu,et al.  Comparison of Droplet Digital PCR to Real-Time PCR for Quantitative Detection of Cytomegalovirus , 2012, Journal of Clinical Microbiology.

[22]  Douglas D. Richman,et al.  Highly Precise Measurement of HIV DNA by Droplet Digital PCR , 2013, PloS one.

[23]  M. Baker Digital PCR hits its stride , 2012, Nature Methods.

[24]  Blaza Toman,et al.  Standard reference material 2366 for measurement of human cytomegalovirus DNA. , 2013, The Journal of molecular diagnostics : JMD.

[25]  T. Dingle,et al.  Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. , 2013, Clinical chemistry.

[26]  L. Corey,et al.  Evaluation of Real-Time PCR versus PCR with Liquid-Phase Hybridization for Detection of Enterovirus RNA in Cerebrospinal Fluid , 2003, Journal of Clinical Microbiology.

[27]  Christopher M. Hindson,et al.  Absolute quantification by droplet digital PCR versus analog real-time PCR , 2013, Nature Methods.

[28]  S H Neoh,et al.  Quantitation of targets for PCR by use of limiting dilution. , 1992, BioTechniques.

[29]  B. Payne,et al.  The significance of very low-level viraemia detected by sensitive viral load assays in HIV infected patients on HAART. , 2011, The Journal of infection.

[30]  A. Geretti,et al.  Low-level viraemia on HAART: significance and management , 2012, Current opinion in infectious diseases.

[31]  M. Boeckh,et al.  Identification of chromosomally integrated human herpesvirus 6 by droplet digital PCR. , 2014, Clinical chemistry.

[32]  L. Cardeñoso,et al.  An International Multicenter Performance Analysis of Cytomegalovirus Load Tests , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[33]  Bill W Colston,et al.  High-throughput quantitative polymerase chain reaction in picoliter droplets. , 2008, Analytical chemistry.