Abnormal binding and disruption in large scale networks involved in human partial seizures

There is a marked increase in the amount of electrophysiological and neuroimaging works dealing with the study of large scale brain connectivity in the epileptic brain. Our view of the epileptogenic process in the brain has largely evolved over the last twenty years from the historical concept of “epileptic focus” to a more complex description of “Epileptogenic networks” involved in the genesis and “propagation” of epileptic activities. In particular, a large number of studies have been dedicated to the analysis of intracerebral EEG signals to characterize the dynamic of interactions between brain areas during temporal lobe seizures. These studies have reported that large scale functional connectivity is dramatically altered during seizures, particularly during temporal lobe seizure genesis and development. Dramatic changes in neural synchrony provoked by epileptic rhythms are also responsible for the production of ictal symptoms or changes in patient’s behaviour such as automatisms, emotional changes or consciousness alteration. Beside these studies dedicated to seizures, large-scale network connectivity during the interictal state has also been investigated not only to define biomarkers of epileptogenicity but also to better understand the cognitive impairments observed between seizures.

[1]  Y. Schiller,et al.  Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo. , 2012, Journal of neurophysiology.

[2]  J. Régis,et al.  The role of corticothalamic coupling in human temporal lobe epilepsy. , 2006, Brain : a journal of neurology.

[3]  Hal Blumenfeld,et al.  Neocortical and Thalamic Spread of Amygdala Kindled Seizures , 2007, Epilepsia.

[4]  F. Bartolomei,et al.  Coherent neural activity and brain synchronization during seizure-induced loss of consciousness. , 2012, Archives italiennes de biologie.

[5]  Fabrice Bartolomei,et al.  The Global Workspace (GW) Theory of Consciousness and Epilepsy , 2011, Behavioural neurology.

[6]  R. Miles,et al.  Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy , 2011, Nature Neuroscience.

[7]  F. Gabreëls,et al.  Neonatal Status Convulsivus, Spongiform Encephalopathy, and Low Activity of Na+/K+ ‐ATPase in the Brain , 1992, Epilepsia.

[8]  H. Lüders,et al.  Presurgical evaluation of epilepsy. , 2001, Brain : a journal of neurology.

[9]  L. Naccache,et al.  Imaging neural signatures of consciousness: 'what', 'when', 'where' and 'how' does it work? , 2012, Archives italiennes de biologie.

[10]  J. Bellanger,et al.  Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. , 2003, Brain : a journal of neurology.

[11]  P. Hofman,et al.  Functional connectivity and language impairment in cryptogenic localization-related epilepsy , 2010, Neurology.

[12]  Fabrice Wendling,et al.  Recollection of vivid memories after perirhinal region stimulations: synchronization in the theta range of spatially distributed brain areas , 2005, Neuropsychologia.

[13]  Fabrice Bartolomei,et al.  Dynamique des réseaux neuraux dans les épilepsies partielles humaines , 2005 .

[14]  L. Lemieux,et al.  Interictal Functional Connectivity of Human Epileptic Networks Assessed by Intracerebral EEG and BOLD Signal Fluctuations , 2011, PLoS ONE.

[15]  M. Kramer,et al.  Emergent network topology at seizure onset in humans , 2008, Epilepsy Research.

[16]  J. Martinerie,et al.  Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures , 1998, Brain Research.

[17]  P. Chauvel,et al.  Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[18]  L. Senhadji,et al.  From EEG signals to brain connectivity: A model-based evaluation of interdependence measures , 2009, Journal of Neuroscience Methods.

[19]  Fabrice Wendling,et al.  Neural Networks Underlying Epileptic Humming , 2002, Epilepsia.

[20]  Igor Timofeev,et al.  Partial cortical deafferentation promotes development of paroxysmal activity. , 2003, Cerebral cortex.

[21]  F Bartolomei,et al.  Rapport 2008 : Traitements chirurgicaux de l ’ épilepsie Évolution des techniques d ’ EEG et de traitement du signal Le concept de réseau épileptogène dans les épilepsies partielles humaines The concept of an epileptogenic network in human partial epilepsies , 2008 .

[22]  F Bartolomei,et al.  Modeling EEG signals and interpreting measures of relationship during temporal-lobe seizures: an approach to the study of epileptogenic networks. , 2001, Epileptic disorders : international epilepsy journal with videotape.

[23]  Fabrice Wendling,et al.  Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours. , 2009, Brain : a journal of neurology.

[24]  F. Wendling,et al.  Neural networks underlying hyperkinetic seizures of “temporal lobe” origin , 2009, Epilepsy Research.

[25]  F. Mormann,et al.  Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients , 2000 .

[26]  C. Stam,et al.  The organization of physiological brain networks , 2012, Clinical Neurophysiology.

[27]  J Bancaud,et al.  Functional stereotaxic exploration (SEEG) of epilepsy. , 1970, Electroencephalography and clinical neurophysiology.

[28]  J. Gotman,et al.  Amygdala-hippocampus relationships in temporal lobe seizures: a phase-coherence study , 1996, Epilepsy Research.

[29]  J. Bellanger,et al.  Neural networks involving the medial temporal structures in temporal lobe epilepsy , 2001, Clinical Neurophysiology.

[30]  J. Bellanger,et al.  Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG , 2001, Clinical Neurophysiology.

[31]  G. Jackson,et al.  Functional connectivity networks are disrupted in left temporal lobe epilepsy , 2006, Annals of neurology.

[32]  J. Bellanger,et al.  Interictal to Ictal Transition in Human Temporal Lobe Epilepsy: Insights From a Computational Model of Intracerebral EEG , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[33]  Boris C. Bernhardt,et al.  Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: Insights on the relation between mesiotemporal connectivity and cortical atrophy , 2008, NeuroImage.

[34]  S. Dehaene,et al.  Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework , 2001, Cognition.

[35]  J. Régis,et al.  Acute alteration of emotional behaviour in epileptic seizures is related to transient desynchrony in emotion-regulation networks , 2005, Clinical Neurophysiology.

[36]  Danielle S Bassett,et al.  Cognitive fitness of cost-efficient brain functional networks , 2009, Proceedings of the National Academy of Sciences.

[37]  F. Bartolomei,et al.  Alteration of global workspace during loss of consciousness: A study of parietal seizures , 2012, Epilepsia.

[38]  Fabrice Wendling,et al.  Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. , 2009, Brain : a journal of neurology.

[39]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[40]  F Wendling,et al.  A method to quantify invariant information in depth-recorded epileptic seizures. , 1997, Electroencephalography and clinical neurophysiology.

[41]  J. Régis,et al.  Enhanced EEG functional connectivity in mesial temporal lobe epilepsy , 2008, Epilepsy Research.

[42]  Huafu Chen,et al.  Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy , 2010, Brain Research.

[43]  P. Chauvel,et al.  Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms , 2009, Human brain mapping.

[44]  François Mauguière,et al.  Involvement of Medial Pulvinar Thalamic Nucleus in Human Temporal Lobe Seizures , 2006, Epilepsia.

[45]  F Bartolomei,et al.  [Spatio-temporal dynamics of neuronal networks in partial epilepsy]. , 2005, Revue neurologique.

[46]  Chris Rorden,et al.  Extrahippocampal gray matter loss and hippocampal deafferentation in patients with temporal lobe epilepsy , 2010, Epilepsia.

[47]  M. de Curtis,et al.  Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro , 2008, Annals of neurology.

[48]  M Guye,et al.  Cortical stimulation study of the role of rhinal cortex in déjà vu and reminiscence of memories , 2004, Neurology.

[49]  J. Velazquez,et al.  Correlations of Cellular Activities in the Nervous System: Physiological and Methodological Considerations , 2009 .

[50]  E. Halgren,et al.  Anatomical origin of déjà vu and vivid 'memories' in human temporal lobe epilepsy. , 1994, Brain : a journal of neurology.

[51]  C. Stam,et al.  Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures , 2007, Clinical Neurophysiology.

[52]  F. H. Lopes da Silva,et al.  Cortical Focus Drives Widespread Corticothalamic Networks during Spontaneous Absence Seizures in Rats , 2002, The Journal of Neuroscience.

[53]  Fabrice Bartolomei,et al.  [The concept of an epileptogenic network in human partial epilepsies]. , 2008, Neuro-Chirurgie.

[54]  G. Alarcón,et al.  Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. , 1995, Electroencephalography and clinical neurophysiology.

[55]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[56]  John S. Duncan,et al.  Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy , 2007, NeuroImage.

[57]  P. Chauvel,et al.  Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. , 2008, Brain : a journal of neurology.

[58]  John S. Duncan,et al.  Abnormalities of language networks in temporal lobe epilepsy , 2007, NeuroImage.

[59]  Fabrice Wendling,et al.  Seizures of temporal lobe epilepsy: identification of subtypes by coherence analysis using stereo-electro-encephalography , 1999, Clinical Neurophysiology.

[60]  Kaspar Anton Schindler,et al.  Synchronization and desynchronization in epilepsy: controversies and hypotheses , 2012, The Journal of physiology.

[61]  F. Wendling,et al.  Temporal lobe epilepsy , 2019, Radiopaedia.org.

[62]  Fabrice Wendling,et al.  Entorhinal Cortex Involvement in Human Mesial Temporal Lobe Epilepsy: An Electrophysiologic and Volumetric Study , 2005, Epilepsia.

[63]  Huafu Chen,et al.  Altered Functional Connectivity and Small-World in Mesial Temporal Lobe Epilepsy , 2010, PloS one.

[64]  R. Goodman,et al.  Cortical abnormalities in epilepsy revealed by local EEG synchrony , 2007, NeuroImage.

[65]  Fabrice Wendling,et al.  Rhinal–hippocampal interactions during déjà vu , 2012, Clinical Neurophysiology.

[66]  Fabrice Wendling,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[67]  M. Brazier Spread of seizure discharges in epilepsy: anatomical and electrophysiological considerations. , 1972, Experimental neurology.

[68]  Kaspar Anton Schindler,et al.  Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. , 2006, Brain : a journal of neurology.

[69]  S. Schiff,et al.  Decreased Neuronal Synchronization during Experimental Seizures , 2002, The Journal of Neuroscience.

[70]  F. Bartolomei,et al.  Synchrony in Neural Networks Underlying Seizure Generation in Human Partial Epilepsies , 2009 .

[71]  P. Mangan,et al.  The Midline Thalamus: Alterations and a Potential Role in Limbic Epilepsy , 2001, Epilepsia.

[72]  E Halgren,et al.  Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy , 2008, Neurology.

[73]  P. Derome,et al.  Thalamic stereo-encephalography. , 1970, Electroencephalography and clinical neurophysiology.

[74]  E. Halgren,et al.  Single-neuron dynamics in human focal epilepsy , 2011, Nature Neuroscience.