Experimentally probing the algorithmic randomness and incomputability of quantum randomness

The advantages of quantum random number generators (QRNGs) over pseudo-random number generators (PRNGs) are normally attributed to the nature of quantum measurements. This is often seen as implying the superiority of the sequences of bits themselves generated by QRNGs, despite the absence of empirical tests supporting this. Nonetheless, one may expect sequences of bits generated by QRNGs to have properties that pseudo-random sequences do not; indeed, pseudo-random sequences are necessarily computable, a highly nontypical property of sequences. In this paper, we discuss the differences between QRNGs and PRNGs and the challenges involved in certifying the quality of QRNGs theoretically and testing their output experimentally. While QRNGs are often tested with standard suites of statistical tests, such tests are designed for PRNGs and only verify statistical properties of a QRNG, but are insensitive to many supposed advantages of QRNGs. We discuss the ability to test the incomputability and algorithmic complexity of QRNGs. While such properties cannot be directly verified with certainty, we show how one can construct indirect tests that may provide evidence for the incomputability of QRNGs. We use these tests to compare various PRNGs to a QRNG, based on superconducting transmon qutrits and certified by the Kochen-Specker Theorem, to see whether such evidence can be found in practice. While our tests fail to observe a strong advantage of the quantum random sequences due to algorithmic properties, the results are nonetheless informative: some of the test results are ambiguous and require further study, while others highlight difficulties that can guide the development of future tests of algorithmic randomness and incomputability.

[1]  M. Borel Les probabilités dénombrables et leurs applications arithmétiques , 1909 .

[2]  Bernd Finkbeiner,et al.  Fields of Logic and Computation II , 2015, Lecture Notes in Computer Science.

[3]  Cristian S. Calude,et al.  A Non-Probabilistic Model of Relativised Predictability in Physics , 2015, Inf..

[4]  Jonathan M. Borwein,et al.  An Empirical Approach to the Normality of π , 2012, Exp. Math..

[5]  Cristian S. Calude,et al.  Quantum randomness and value indefiniteness , 2006, quant-ph/0611029.

[6]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[7]  Zoltán Fülöp,et al.  Developments in Language Theory , 2003, Lecture Notes in Computer Science.

[8]  Cristian S. Calude Borel Normality and Algorithmic Randomness , 1993, Developments in Language Theory.

[9]  H. Schmidt Quantum‐Mechanical Random‐Number Generator , 1970 .

[10]  Yaoyun Shi,et al.  N ov 2 01 4 Universal security for randomness expansion , 2014 .

[11]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[12]  Richard E. Overill,et al.  Foundations of Cryptography: Basic Tools , 2002, J. Log. Comput..

[13]  Cristian S. Calude,et al.  Experimental Evidence of Quantum Randomness Incomputability , 2010, ArXiv.

[14]  Kamil Kulesza,et al.  Humans cannot consciously generate random numbers sequences: Polemic study. , 2008, Medical hypotheses.

[15]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[16]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[17]  Arjen K. Lenstra,et al.  Ron was wrong, Whit is right , 2012, IACR Cryptol. ePrint Arch..

[18]  Cristian S. Calude,et al.  Von Neumann Normalisation of a Quantum Random Number Generator , 2011, Comput..

[19]  S. Barry Cooper,et al.  Computability In Context: Computation and Logic in the Real World , 2009 .

[20]  Antoine Suarez,et al.  Is Science Compatible with Free Will , 2013 .

[21]  A. Falcon Physics I.1 , 2018 .

[22]  Cristian Claude,et al.  Information and Randomness: An Algorithmic Perspective , 1994 .

[23]  J. Schwartz,et al.  A note on monte carlo primality tests and algorithmic information theory , 1978 .

[24]  Armin W. Schulz,et al.  Interpretations of probability , 2003 .

[25]  Marcus Hutter,et al.  Algorithmic Information Theory , 1977, IBM J. Res. Dev..

[26]  Cristian S. Calude,et al.  Strong Kochen-Specker theorem and incomputability of quantum randomness , 2012, Physical Review A.

[27]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[28]  Oded Goldreich Foundations of Cryptography: Index , 2001 .

[29]  Giuseppe Longo,et al.  The mathematics of computing between logic and physics , 2011 .

[30]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[31]  D. Champernowne The Construction of Decimals Normal in the Scale of Ten , 1933 .

[32]  G. Marsaglia On the Randomness of Pi and Other Decimal Expansions , 2005 .

[33]  Quantumness, Randomness and Computability , 2015, 1508.02360.

[34]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[35]  Sulla Derivabilita,et al.  RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO , 2008 .

[36]  Melissa E. O'Neill PCG : A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation , 2014 .

[37]  W. Wagenaar,et al.  The perception of randomness , 1991 .

[38]  Cristian S. Calude Information and Randomness: An Algorithmic Perspective , 1994 .

[39]  Y. Peres Iterating Von Neumann's Procedure for Extracting Random Bits , 1992 .

[40]  Gabriel Senno,et al.  Non-uniformity in the Quantis Random Number Generator , 2014 .

[41]  Tanja Lange,et al.  Factoring RSA keys from certified smart cards: Coppersmith in the wild , 2013, IACR Cryptol. ePrint Arch..

[42]  A. Hnilo,et al.  Kolmogorov complexity of sequences of random numbers generated in Bell's experiments , 2018, Physical Review A.

[43]  Antony Eagle,et al.  Randomness Is Unpredictability , 2005, The British Journal for the Philosophy of Science.

[44]  Maciej Lewenstein,et al.  Randomness in quantum mechanics: philosophy, physics and technology , 2016, Reports on progress in physics. Physical Society.

[45]  M. A. Can,et al.  Simple test for hidden variables in spin-1 systems. , 2007, Physical review letters.

[46]  Antony Eagle,et al.  Chance versus randomness , 2014 .

[47]  A. Suarez,et al.  Exploring Free Will and Consciousness in the Light of Quantum Physics and Neuroscience , 2013 .

[48]  Xiang Zhang,et al.  Experimental Certification of Random Numbers via Quantum Contextuality , 2013, Scientific Reports.

[49]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[50]  Cristian S. Calude Quantum Randomness: From Practice to Theory and Back , 2017, The Incomputable.

[51]  Andreas Wallraff,et al.  Realization of a Quantum Random Generator Certified with the Kochen-Specker Theorem. , 2017, Physical review letters.

[52]  K. Svozil The quantum coin toss-testing microphysical undecidability , 1990 .

[53]  Mark A. Moraes,et al.  Parallel random numbers: As easy as 1, 2, 3 , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[54]  A. Cabello Experimentally testable state-independent quantum contextuality. , 2008, Physical review letters.

[55]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[56]  N. Gisin,et al.  Optical quantum random number generator , 1999, quant-ph/9907006.

[57]  Wolfgang Reisig,et al.  Fields of Logic and Computation III: Essays Dedicated to Yuri Gurevich on the Occasion of His 80th Birthday , 2020, Fields of Logic and Computation III.

[58]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[59]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[60]  David Mumford,et al.  Communications on Pure and Applied Mathematics , 1989 .

[61]  Zhu Cao,et al.  Quantum random number generation , 2015, npj Quantum Information.

[62]  P. Kleingeld,et al.  The Stanford Encyclopedia of Philosophy , 2013 .

[63]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[64]  David J. Groggel,et al.  Practical Nonparametric Statistics , 2000, Technometrics.

[65]  Karin Baier,et al.  Pi A Source Book , 2016 .

[66]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[67]  Aaron Sloman The Incomputable: Journeys Beyond the Turing Barrier , 2017, The Incomputable.

[68]  Erik Woodhead,et al.  Semi-device-independent framework based on natural physical assumptions , 2016, 1612.06828.

[69]  Volker Strassen,et al.  Erratum: A Fast Monte-Carlo Test for Primality , 1978, SIAM J. Comput..

[70]  B. M. Rogina,et al.  Quantum random number generator based on photonic emission in semiconductors. , 2006, The Review of scientific instruments.

[71]  Cristian S. Calude,et al.  A quantum random number generator certified by value indefiniteness , 2010, Mathematical Structures in Computer Science.

[72]  L. Tian,et al.  Practical quantum random number generator based on measuring the shot noise of vacuum states , 2010 .

[73]  Cristian S. Calude,et al.  Value-indefinite observables are almost everywhere , 2013, 1309.7188.

[74]  Alí M. Angulo Martínez,et al.  How random are random numbers generated using photons? , 2015, 1502.05882.

[75]  Cristian S. Calude,et al.  On the Unpredictability of Individual Quantum Measurement Outcomes , 2014, Fields of Logic and Computation II.

[76]  R. Pinch The Carmichael Numbers up to 10 15 , 1993, math/0604376.

[77]  George Marsaglia,et al.  Toward a universal random number generator , 1987 .

[78]  Alastair A. Abbott,et al.  Value Indefiniteness, Randomness and Unpredictability in Quantum Foundations. (De la Valeur Indéfinie aux Notions d'Aléatoire et d'Imprévisibilité Quantiques) , 2015 .

[79]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[80]  Cristian S. Calude,et al.  A variant of the Kochen-Specker theorem localising value indefiniteness , 2015, 1503.01985.

[81]  Adrian Kent,et al.  Private randomness expansion with untrusted devices , 2010, 1011.4474.

[82]  A. Acín True Quantum Randomness , 2013 .

[83]  H. Weinfurter,et al.  A fast and compact quantum random number generator , 1999, quant-ph/9912118.

[84]  Oded Goldreich,et al.  Foundations of Cryptography: List of Figures , 2001 .

[85]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..