A General Framework for Urban Area Extraction Exploiting Multiresolution SAR Data Fusion

This work is devoted to the presentation of a general framework for multiresolution synthetic aperture radar (SAR) data fusion for the purpose of urban area extraction. Within this framework, prerequisites for a reasonable analysis of SAR data from different sensors and spatial resolutions as well as the state of the art of fusion techniques are discussed. Furthermore, several fusion approaches on the pixel, feature, and decision level are applied on multiscale SAR data sets in a uniform experimental setup over four test sites: 1) Sao Paulo (Brazil); 2) Beijing; 3) Guangzhou; and 4) Shanghai (People's Republic of China). The accuracy of the resulting urban maps is assessed quantitatively via comparison against manually generated reference data sets. Furthermore, advantages and drawbacks of the applied fusion methods are evaluated.

[1]  P. Gamba,et al.  Discriminating urban environments using multi-scale texture and multiple SAR images , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.

[2]  Fawwaz T. Ulaby,et al.  Knowledge-based land-cover classification using ERS-1/JERS-1 SAR composites , 1996, IEEE Trans. Geosci. Remote. Sens..

[3]  David A. Clausi,et al.  Comparison and fusion of co‐occurrence, Gabor and MRF texture features for classification of SAR sea‐ice imagery , 2001 .

[4]  Anil K. Jain,et al.  Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images , 1994, IEEE Trans. Geosci. Remote. Sens..

[5]  Paolo Gamba,et al.  A fuzzy fusion approach for improved urban area detection in multi-resolution SAR data , 2015, 2015 Joint Urban Remote Sensing Event (JURSE).

[6]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Paolo Gamba,et al.  Fast and Efficient Urban Extent Extraction Using ASAR Wide Swath Mode Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[8]  Kuldip Singh,et al.  An Analysis of Texture Measures in PCA-Based Unsupervised Classification of SAR Images , 2009, IEEE Geoscience and Remote Sensing Letters.

[9]  Peter Reinartz,et al.  Multi-sensor data fusion for urban area classification , 2011, 2011 Joint Urban Remote Sensing Event.

[10]  Paolo Gamba,et al.  Robust Extraction of Urban Area Extents in HR and VHR SAR Images , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[12]  A. Farina,et al.  Radar image fusion by multiscale Kalman filtering , 2000, Proceedings of the Third International Conference on Information Fusion.

[13]  Peijun Du,et al.  Improved extraction of urban extents from ASAR Wide Swath data , 2015, 2015 Joint Urban Remote Sensing Event (JURSE).

[14]  Sandro Martinis,et al.  A Multi-Scale Flood Monitoring System Based on Fully Automatic MODIS and TerraSAR-X Processing Chains , 2013, Remote. Sens..

[15]  J. V. Soares,et al.  Mapping deforestation and land use in Amazon rainforest by using SIR-C imagery , 1997 .

[16]  A. Belhadj-Aissa,et al.  Multi-scale Satellite Images Fusion using Dempster Shafer Theory , 2008, 2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications.

[17]  Wooil M. Moon,et al.  Data fusion of multiple polarimetric SAR images using discrete wavelet transform (DWT) , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[18]  Xinbo Gao,et al.  SAR image classification based on texture feature fusion , 2014, 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP).

[19]  Praveen Kumar,et al.  A multiple scale state-space model for characterizing subgrid scale variability of near-surface soil moisture , 1999, IEEE Trans. Geosci. Remote. Sens..

[20]  Yang Ruliang,et al.  Pixel level fusion for multiple SAR images using PCA and wavelet transform , 2006, 2006 CIE International Conference on Radar.

[21]  Jordi Inglada,et al.  A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Gabriele Moser,et al.  Classification of Very High Resolution SAR Images of Urban Areas Using Copulas and Texture in a Hierarchical Markov Random Field Model , 2013, IEEE Geoscience and Remote Sensing Letters.

[23]  Thomas Esch,et al.  Urban Footprint Processor—Fully Automated Processing Chain Generating Settlement Masks From Global Data of the TanDEM-X Mission , 2013, IEEE Geoscience and Remote Sensing Letters.

[24]  Alexander Jacob,et al.  Object-Based Fusion of Multitemporal Multiangle ENVISAT ASAR and HJ-1B Multispectral Data for Urban Land-Cover Mapping , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[25]  A. Farina,et al.  The fusion of different resolution SAR images , 1997 .

[26]  Lorenzo Bruzzone,et al.  Image fusion techniques for remote sensing applications , 2002, Inf. Fusion.

[27]  Lu Liang,et al.  China’s urban expansion from 1990 to 2010 determined with satellite remote sensing , 2012 .

[28]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[29]  Daniel Alves Aguiar,et al.  Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data , 2010, Remote. Sens..

[30]  Simon Haykin,et al.  Classification of sea-ice images using a dual-polarized radar , 1990 .

[31]  Francesca Bovolo,et al.  A detail-preserving scale-driven approach to change detection in multitemporal SAR images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Xavier Descombes,et al.  Comparative Study on the Performance of Multiparameter SAR Data for Operational Urban Areas Extraction Using Textural Features , 2009, IEEE Geoscience and Remote Sensing Letters.

[33]  Paolo Gamba,et al.  Fusing SAR urban extent extractions at multiple spatial resolutions , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.