Hot‐Electron Impact Excitation of Tb3+ Luminescence in ZnS: Tb3+ Thin Films

It is experimentally demonstrated in a new and direct manner that electroluminescence in thin films of ZnS: Tb3+ is excited by the direct impact of hot electrons on the Tb3+ ions. The scheme consists of monitoring as a function of applied voltage across the structure studied‐a ZnS: Tb3+, Ta2O5 sandwich‐the ratio of fluorescence intensities I(5D3)/I(5D4) originating from the 5D3 and 5D4 levels of Tb3+ at 3.25 and 2.54 eV, respectively. As the electron energy distribution is shifted to higher energies by increasing the voltage across the structure, I(5D3)/I(5D4) grows. The Tb3+ ion thus acts as a probe for the electron distribution in these films. By comparing the results obtained to simple theory, it is concluded that in considering low‐energy losses of the electrons in the active layer, inelastic scattering by low‐lying 7F levels of Tb3+ can not be the sole energy‐loss mechanism at the Tb concentration of interest. The optical phonons of ZnS must also be taken into account.

[1]  D. Curie Libres parcours des électrons dans les cristaux, effets d'électroluminescence et phénomènes de rupture diélectrique , 1952 .

[2]  D. Kahng ELECTROLUMINESCENCE OF RARE‐EARTH AND TRANSITION METAL MOLECULES IN II‐VI COMPOUNDS VIA IMPACT EXCITATION , 1968 .

[3]  F. Williams,et al.  Electroluminescence of Single Crystals of ZnS: Cu , 1952 .

[4]  H. Guggenheim,et al.  Optical Absorption and Fluorescence Spectra of Single‐Crystal TbF3 , 1969 .

[5]  A. Bloom,et al.  Gas lasers. , 1968, Applied optics.

[6]  Benjamin Bederson,et al.  Advances in atomic and molecular physics , 1965 .

[7]  D. Kahng,et al.  Characteristics of pulse excited electroluminescence from ZnS films containing rare earth fluroide , 1970 .

[8]  S. Shionoya,et al.  Relaxation between Excited Levels of Tb^3 Ion Due to Resonance Energy Transfer , 1970 .

[9]  R. A. Logan,et al.  Ionization Rates of Holes and Electrons in Silicon , 1964 .

[10]  L. Johnson,et al.  Energy Transfer Between Rare‐Earth Ions , 1966 .

[11]  H. Moos,et al.  Multiphonon orbit-lattice relaxation in LaBr sub 3, LaCl sub 3, and LaF sub 3. , 1967 .

[12]  D. Kahng,et al.  Photoluminescence of ZnS : TbF3 Thin Films , 1970 .

[13]  A. Kiel Theory of Electric Shifts of the Optical and Magnetic Resonance Properties of Paramagnetic Ions in Crystals , 1966 .

[14]  G. Dieke,et al.  Energy Levels of Tb3+ in LaCl3 and Other Chlorides , 1963 .

[15]  G. E. Peterson,et al.  Some Studies of Relaxation Processes in Tb 3+ Using Pulsed Excitation , 1963 .

[16]  D. Kahng,et al.  Electroluminescence of ZnS Lumocen Devices Containing Rare‐Earth and Transition‐Metal Fluorides , 1969 .

[17]  G. A. Baraff,et al.  Maximum Anisotropy Approximation for Calculating Electron Distributions; Application to High Field Transport in Semiconductors , 1964 .

[18]  F. Williams,et al.  The mechanism of electroluminescence of zinc sulphide , 1955 .