Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble

The heat capacity and isomer distributions of the 38-atom Lennard-Jones cluster have been calculated in the canonical ensemble using parallel tempering Monte Carlo methods. A distinct region of temperature is identified that corresponds to equilibrium between the global minimum structure and the icosahedral basin of structures. This region of temperatures occurs below the melting peak of the heat capacity and is accompanied by a peak in the derivative of the heat capacity with temperature. Parallel tempering is shown to introduce correlations between results at different temperatures. A discussion is given that compares parallel tempering with other related approaches that ensure ergodic simulations.

[1]  R. Whetten,et al.  Statistical thermodynamics of the cluster solid-liquid transition. , 1990, Physical review letters.

[2]  Jonathan P. K. Doye,et al.  Calculation of thermodynamic properties of small Lennard‐Jones clusters incorporating anharmonicity , 1995 .

[3]  Bruce J. Berne,et al.  Multicanonical jump walking: A method for efficiently sampling rough energy landscapes , 1999 .

[4]  D. L. Freeman,et al.  Phase changes in 38-atom Lennard-Jones clusters. II. A parallel tempering study of equilibrium and dynamic properties in the molecular dynamics and microcanonical ensembles , 2000, physics/0003072.

[5]  M. Deem,et al.  A biased Monte Carlo scheme for zeolite structure solution , 1998, cond-mat/9809085.

[6]  J. Doye,et al.  THE DOUBLE-FUNNEL ENERGY LANDSCAPE OF THE 38-ATOM LENNARD-JONES CLUSTER , 1998, cond-mat/9808265.

[7]  David J. Wales,et al.  Coexistence in small inert gas clusters , 1993 .

[8]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[9]  J. Doye,et al.  Structural relaxation in atomic clusters: master equation dynamics. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[11]  The melting transition of Ni7 and Ni7H as modeled by a semi-empirical potential , 1998 .

[12]  D. Freeman,et al.  Computational study of the structures and thermodynamic properties of ammonium chloride clusters using a parallel jump-walking approach , 1996, chem-ph/9602005.

[13]  G. López,et al.  Gibbs free‐energy changes for the growth of argon clusters adsorbed on graphite , 1992 .

[14]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[15]  J. Doll,et al.  Theoretical studies of the energetics and structures of atomic clusters , 1989 .

[16]  J. Doye,et al.  Tetrahedral global minimum for the 98-atom Lennard-Jones cluster. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  David J. Wales,et al.  Structure, dynamics, and thermodynamics of benzene-Arn clusters (1⩽n⩽8 and n=19) , 1997 .

[18]  J. D. Doll,et al.  COMPUTATIONAL STUDIES OF CLUSTERS:Methods and Results , 1996 .

[19]  G. López,et al.  Phase transitions in molecular clusters , 1997 .

[20]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[21]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[22]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[23]  G. C. Nieman,et al.  REACTIONS OF NI38 WITH N2, H2, AND CO: CLUSTER STRUCTURE AND ADSORBATE BINDING SITES , 1997 .

[24]  C. J. Tsai,et al.  Use of the histogram and jump‐walking methods for overcoming slow barrier crossing behavior in Monte Carlo simulations: Applications to the phase transitions in the (Ar)13 and (H2O)8 clusters , 1993 .

[25]  David J. Wales,et al.  Free energy barriers to melting in atomic clusters , 1994 .

[26]  J. Pablo,et al.  Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model , 1999 .

[27]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[28]  J. Doye,et al.  Thermodynamics and the Global Optimization of Lennard-Jones clusters , 1998, cond-mat/9806020.

[29]  M. Karplus,et al.  The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics , 1997 .

[30]  R. Elber,et al.  Reaction path study of conformational transitions in flexible systems: Applications to peptides , 1990 .

[31]  I. Andricioaei,et al.  On Monte Carlo and molecular dynamics methods inspired by Tsallis statistics: Methodology, optimization, and application to atomic clusters , 1997 .

[32]  S. Whittington,et al.  Monte carlo study of the interacting self-avoiding walk model in three dimensions , 1996 .

[33]  D. L. Freeman,et al.  Reducing Quasi-Ergodic Behavior in Monte Carlo Simulations by J-Walking: Applications to Atomic Clusters , 1990 .

[34]  A. C. Zettlemoyer,et al.  Homogeneous Nucleation Theory , 1974 .

[35]  J. D. Doll,et al.  Extending J walking to quantum systems: Applications to atomic clusters , 1992 .

[36]  J. Doye,et al.  Evolution of the Potential Energy Surface with Size for Lennard-Jones Clusters , 1999, cond-mat/9903305.

[37]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[38]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[39]  G. López,et al.  A Study of Low Temperature Heat Capacity Anomalies in Bimetallic Alloy Clusters using J-Walking Monte Carlo Methods , 1993 .