One‐electron properties of several small molecules using near Hartree–Fock limit basis sets

Selected one‐electron properties for eight small molecules (H2O, CO, N2, H2S, NH3, PH3, HCl, and HF) have been computed using extended Gaussian basis sets at the SCF and CI levels. The basis sets and CI methodologies were capable of recovering approximately 86% of the estimated total correlation energy (88% of the valence) and, to the best of our knowledge, yielded the lowest variational energies and closest overall agreement with experimentally determined properties to date. Compared to numerical Hartree–Fock properties the current values are generally within 1%, with the largest deviation being 2.6% for δ at the nucleus. The sensitivity of the computed properties to the basis set composition and type of CI are discussed.

[1]  Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy , 1973 .

[2]  R. Bartlett,et al.  Hyperpolarizabilities of the hydrogen fluoride molecule: A discrepancy between theory and experiment? , 1986 .

[3]  C. M. Reeves,et al.  Automatic Fundamental Calculations of Molecular Structure , 1956, Nature.

[4]  N. Hush,et al.  The infrared absorption intensities of the water molecule: A quantum chemical study , 1986 .

[5]  D. Bounds,et al.  Molecular multipole moment calculations using universal systematic sequences of even-tempered basis sets , 1985 .

[6]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[7]  Ernest R. Davidson,et al.  Size consistency in the dilute helium gas electronic structure , 1977 .

[8]  E. Clementi,et al.  Study of the Structure of Molecular Complexes. I. Energy Surface of a Water Molecule in the Field of a Lithium Positive Ion , 1972 .

[9]  E. Davidson,et al.  Ab initio multireference CI determinations of the electron affinity of carbon and oxygen , 1985 .

[10]  D. Feil,et al.  An analysis of the electron density distribution in the free and polarized H2O molecule as calculated in the local density approximation , 1986 .

[11]  J. Muenter,et al.  Stark-hyperfine measurements in K = 0 and K = 1 states of NH3☆ , 1981 .

[12]  A. Dymanus,et al.  Magnetic Properties and Molecular Quadrupole Tensor of the Water Molecule by Beam‐Maser Zeeman Spectroscopy , 1970 .

[13]  D. R. Stull JANAF thermochemical tables , 1966 .

[14]  D. M. Cooper,et al.  A theoretical study of selected singlet and triplet states of the CO molecule , 1981 .

[15]  J. F. Harrison Some One‐Electron Properties of H2O and NH3 , 1967 .

[16]  F. B. Duijneveldt,et al.  Gaussian basis sets which yield accurate Hartree—Fock electric moments and polarizabilities , 1982 .

[17]  R. Bartlett Electronic Structure Methods. (Book Reviews: Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules) , 1985 .

[18]  J. Pople,et al.  Correlation energies for AH n molecules and cations , 1975 .

[19]  C. Pekeris,et al.  Ground State of Two-Electron Atoms , 1958 .

[20]  P. Pyykkö,et al.  Two-dimensional, fully numerical molecular calculations , 1985 .

[21]  P. Lazzeretti,et al.  On the theoretical determination of molecular first hyperpolarizability , 1981 .

[22]  W. S. Benedict,et al.  Rotation‐Vibration Spectra of Deuterated Water Vapor , 1956 .

[23]  I. Shavitt,et al.  Ab initio SCF and CI studies on the ground state of the water molecule. I. Comparison of CGTO and STO basis sets near the Hartree-Fock limit , 1975 .

[24]  Klaus Ruedenberg,et al.  Systematic approach to extended even-tempered orbital bases for atomic and molecular calculations , 1979 .

[25]  R. Bartlett,et al.  Molecular hyperpolarizabilities. II. A correlated study ofH2O , 1981 .

[26]  Incorrect Dissociation of CO in the Restricted Hartree–Fock Approximation , 1970 .

[27]  S. Peyerimhoff,et al.  Ab initio SCF and MRD CI studies of the FHCl− ion , 1984 .

[28]  David Feller,et al.  Basis Set Selection for Molecular Calculations , 1986 .

[29]  H. Schaefer,et al.  Ground state self-consistent-field wave functions and molecular properties for the isoelectronic series SiH4, PH3, H2S, and HCl , 1970 .

[30]  J. Koutecký,et al.  Usefulness of modified virtual orbitals in multireference CI procedure illustrated by calculations on lithium clusters , 1985 .

[31]  R. Amos Calculation of polarizability derivatives using analytic gradient methods , 1986 .

[32]  C. Burrus Stark Effect from 1.1 to 2.6 Millimeters Wavelength : PH3, PD3, DI, and CO , 1958 .

[33]  E. Clementi,et al.  Electronic Structure and Inversion Barrier of Ammonia , 1970 .

[34]  Bowen Liu,et al.  Theoretical study of molecular dipole moment functions. I. The X 1Σ+ state of CO , 1977 .

[35]  H. Seidel Zahlenwerte und Funktionen , 1965 .

[36]  T. Cool,et al.  Overtone emission spectroscopy of HF and DF: Vibrational matrix elements and dipole moment function , 1976 .

[37]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[38]  K. Casleton,et al.  Molecular zeeman effect in NH3 , 1973 .

[39]  M. Krauss,et al.  Multiconfiguration self-consistent-field calculation of the dipole moment function of CO/X 1 sigma +/ , 1974 .

[40]  A. Dymanus,et al.  Hyperfine Structure of HD17O by Beam‐Maser Spectroscopy , 1969 .

[41]  R. Cook,et al.  Molecular force field and structure of water: Recent microwave results , 1974 .

[42]  R. Bartlett,et al.  Accurate numerical orbital MBPT/CC study of the electron affinity of fluorine and the dissociation energy of hydrogen fluoride , 1986 .

[43]  A. D. McLean,et al.  Computed Ground‐State Properties of FH and CH , 1967 .

[44]  R. Amos MCSCF calculations of the properties of hydrogen fluoride , 1978 .

[45]  R. Poirier,et al.  Ab initio calculations on sulfur‐containing compounds. II. One‐electron properties of H2S , 1984 .

[46]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[47]  E. N. Lassettre Momentum eigenfunctions in the complex momentum plane. V. Analytic behavior of the Schrödinger equation in the complex momentum plane. The Yukawa potential , 1985 .

[48]  J. Bearden,et al.  Atomic energy levels , 1965 .

[49]  D. Dixon,et al.  Electronic structure of phosphine. Effect of basic set and correlation on the inversion barrier , 1982 .

[50]  C. Burrus Stark Effect at 0.93, 1.18, and 1.5 Millimeters Wavelength: DCl, DBr, and DI , 1959 .

[51]  Ernest R. Davidson,et al.  Studies in Configuration Interaction: The First-Row Diatomic Hydrides , 1969 .

[52]  P. Bunker,et al.  The effective rotation-bending Hamiltonian of a triatomic molecule, and its application to extreme centrifugal distortion in the water molecule , 1974 .

[53]  M. Strandberg,et al.  Centrifugal Distortion in Asymmetric Molecules. II. HDS , 1951 .

[54]  W. C. Ermler,et al.  Ab initio SCF and CI studies on the ground state of the water molecule. II. Potential energy and property surfaces , 1976 .

[55]  Sunney I. Chan,et al.  Approximate Hartree–Fock Wavefunctions, One‐Electron Properties, and Electronic Structure of the Water Molecule , 1968 .

[56]  W. S. Benedict,et al.  The calculation of self-broadened line widths in linear molecules , 1963 .

[57]  D. Fox,et al.  Error Bounds for Expectation Values , 1963 .

[58]  E. Davidson,et al.  An approximation to frozen natural orbitals through the use of the Hartree–Fock exchange potential , 1981 .

[59]  Simple procedure for estimating the Hartree‐Fock‐limit energies of molecules , 1974 .

[60]  P. Pyykkö,et al.  Two-dimensional, fully numerical molecular calculations: VIII. Electric field gradients of diatomic hydrides LiH-ClH at the HFS level , 1985 .

[61]  J. W. Moskowitz,et al.  One‐Electron Properties of Near‐Hartree–Fock Wavefunctions. II. HCHO, CO , 1969 .

[62]  Charles A. Burrus,et al.  One-to-Two Millimeter Wave Spectroscopy. II.H2S , 1953 .

[63]  Pavel Rosmus,et al.  PNO–CI and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first‐row and second‐row diatomic hydrides , 1975 .

[64]  C. W. Kern,et al.  Nuclear Corrections to Electronic Expectation Values: Zero‐Point Vibrational Effects in the Water Molecule , 1968 .

[65]  C. Townes,et al.  Isotopic Mass Ratios, Magnetic Moments and the Sign of the Electric Dipole Moment in Carbon Monoxide , 1958 .

[66]  Fink,et al.  Small-angle elastic electron scattering and moments of the molecular electronic charge density. , 1986, Physical review. A, General physics.

[67]  J. Muenter,et al.  Electric dipole moment of carbon monoxide , 1975 .

[68]  D. W. Turner,et al.  High resolution molecular photoelectron spectroscopy II. Water and deuterium oxide , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[69]  E. Davidson,et al.  A study of the ground state wave function of carbon monoxide , 1970 .

[70]  P. Löwdin Quantum Theory of Electronic Structure of Molecules , 1960 .

[71]  J. Muenter,et al.  Hyperfine Structure Constants of HF and DF , 1970 .

[72]  The energetic effects of p, d, and f Gaussian polarization functions on closed‐shell AHn oxygen and sulfur hydrides , 1977 .

[73]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[74]  C. Bauschlicher The effect of bond functions on dissociation energies , 1985 .

[75]  Frederick Albert Matsen IV,et al.  Perturbation Energy Coefficients and Ionization Potentials of the Ground State of Three- to Ten-Electron Isoelectronic Atomic Series , 1962 .

[76]  P. E. Cade,et al.  Electronic Structure of Diatomic Molecules. VI.A. Hartree—Fock Wavefunctions and Energy Quantities for the Ground States of the First‐Row Hydrides, AH , 1967 .

[77]  Enrico Clementi,et al.  Correlation Energy in Atomic Systems. V. Degeneracy Effects for the Second‐Row Atoms , 1968 .

[78]  I. L. Cooper,et al.  A comparative study of the convergence characteristics of modified virtual orbitals within an orbitally ordered CI expansion , 1982 .

[79]  G. Diercksen,et al.  Finite-field many-body perturbation theory. IX: Electric properties of ammonia , 1986 .

[80]  E. Clementi Approximate relativistic correction for 10–18 electrons in atoms , 1964 .

[81]  A. Barbe,et al.  Force constants and form of vibration of sulfur dioxide from infrared spectrum of S18O2 , 1971 .

[82]  Hans-Joachim Werner,et al.  PNO-CI and PNO-CEPA studies of electron correlation effects , 1976 .

[83]  W. Flygare,et al.  Values of 〈ψ0 | ∑iri2 | ψ0〉 for H2O, NH3, and CH2O , 1965 .