Nanofocusing of optical energy in tapered plasmonic waveguides.

We predict theoretically that surface plasmon polaritons propagating toward the tip of a tapered plasmonic waveguide are slowed down and asymptotically stopped when they tend to the tip, never actually reaching it (the travel time to the tip is logarithmically divergent). This phenomenon causes accumulation of energy and giant local fields at the tip. There are various prospective applications in nano-optics and nanotechnology.

[1]  L. Novotný,et al.  Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes , 2003, Science.

[2]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[3]  Surface‐polariton propagation for scanning near‐field optical microscopy application , 1999, Journal of microscopy.

[4]  J. Hvam,et al.  Waveguiding in surface plasmon polariton band gap structures. , 2001, Physical review letters.

[5]  F. Keilmann,et al.  Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe , 2002 .

[6]  H. Lezec,et al.  Effects of hole depth on enhanced light transmission through subwavelength hole arrays , 2002 .

[7]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[8]  Mark I. Stockman,et al.  Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory , 2004 .

[9]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[10]  F. Keilmann,et al.  Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy , 2001 .

[11]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[12]  L. Andrew Lyon,et al.  Unidirectional Plasmon Propagation in Metallic Nanowires , 2000 .

[13]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[14]  D. Bergman,et al.  Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? , 2001, Physical review letters.

[15]  Anatoly V. Zayats,et al.  Near-field photonics: surface plasmon polaritons and localized surface plasmons , 2003 .

[16]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[17]  K.A. Michalski,et al.  Electromagnetic wave theory , 1987, Proceedings of the IEEE.

[18]  George,et al.  Giant fluctuations of local optical fields in fractal clusters. , 1994, Physical review letters.

[19]  A. Bouhelier,et al.  Plasmon‐coupled tip‐enhanced near‐field optical microscopy , 2003, Journal of microscopy.

[20]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[21]  Liebsch Screening properties of a metal surface at low frequencies and finite wave vectors. , 1985, Physical review letters.

[22]  Lewis J. Rothberg,et al.  The structural basis for giant enhancement enabling single-molecule Raman scattering , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Mikhailovsky,et al.  Broadband near-field interference spectroscopy of metal nanoparticles using a femtosecond white-light continuum. , 2003, Optics letters.

[24]  George,et al.  Enhanced Raman scattering by fractal clusters: Scale-invariant theory. , 1992, Physical review. B, Condensed matter.

[25]  M. El-Sayed,et al.  The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal , 2000 .

[26]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[27]  Andrew G. Glen,et al.  APPL , 2001 .