Electrochemistry in Room-Temperature Ionic Liquids: Potential Windows at Mercury Electrodes

The cathodic and anodic potential limits of eleven different ionic liquids were determined at a mercury hemisphere electrode. Ionic liquids containing the phosphonium cation (tri(n-hexyl)tetradecylphosphonium, [P14,6,6,6]+) give the largest potential window, especially when coupled to a trifluorotris(pentafluoroethyl)phosphate, [FAP]−, or bis(trifluoromethanesulfonyl)imide, [NTf2]−, anion.

[1]  R. Compton,et al.  Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids , 2008 .

[2]  A. Bond,et al.  Electrochemistry of room temperature protic ionic liquids. , 2008, The journal of physical chemistry. B.

[3]  Darren L. Poole,et al.  Voltammetric Characterization of the Ferrocene|Ferrocenium and Cobaltocenium|Cobaltocene Redox Couples in RTILs , 2008 .

[4]  David Rooney,et al.  Thermal Conductivities of Ionic Liquids over the Temperature Range from 293 K to 353 K , 2007 .

[5]  D. Macfarlane,et al.  Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids , 2006 .

[6]  F. Endres,et al.  Air and water stable ionic liquids in physical chemistry. , 2006, Physical chemistry chemical physics : PCCP.

[7]  J. Tojo,et al.  Temperature Dependence of Physical Properties of Ionic Liquid 1,3-Dimethylimidazolium Methyl Sulfate , 2006 .

[8]  R. Compton,et al.  Extended electrochemical windows made accessible by room temperature ionic liquid/organic solvent electrolyte systems. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  N. Ignat’ev,et al.  New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions , 2005 .

[10]  A. Bond,et al.  Practical considerations associated with voltammetric studies in room temperature ionic liquids. , 2005, The Analyst.

[11]  R. G. Evans,et al.  Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  J. Conboy,et al.  1-Alkyl-3-methylimidazolium Bis(perfluoroalkylsulfonyl)imide Water-Immiscible Ionic Liquids The Effect of Water on Electrochemical and Physical Properties , 2004 .

[13]  J. Wadhawan,et al.  Voltammetry of oxygen in the room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide: One-electron reduction to form superoxide. Steady-state and transient behavior in the same cyclic voltammogram re , 2003 .

[14]  P. Suarez,et al.  Electrochemical Behavior of Vitreous Glass Carbon and Platinum Electrodes in the Ionic Liquid 1-n-Butyl-3-Methylimidazolium Trifluoroacetate , 2002 .

[15]  T. Welton,et al.  Molecular states of water in room temperature ionic liquids , 2001 .

[16]  K. R. Seddon,et al.  Ionic Liquids: Green Solvents for the Future , 2001 .

[17]  D. Macfarlane,et al.  Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases , 1999 .

[18]  J. Wadhawan,et al.  Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids , 2000 .