Strang's formula for holomorphic semi-groups

Let E(t)=exp(−t(A+B)) and let W(t) be the Strang approximation to E(t): W(t)=exp(−tA/2)exp(−tB)exp(−tA/2). In this article, we give a formal Taylor expansion with remainder for W(t), where the derivation operator is replaced by the bracket with one of the operators A or B. We validate this expansion in several functional cases where A and B generate a holomorphic semi-group. They include the case of the Kac transfer operator, and the case A=−MΔ with M a non-necessarily diagonal matrix with spectrum included in {Rz>0} and B the multiplication by a spatially dependent matrix. We infer stability estimates and estimates on ∥E(t)−W(t/n)n∥ when n tends to infinity.

[1]  Takashi Ichinose,et al.  Estimate of the difference between the Kac operator and the Schrödinger semigroup , 1997 .

[2]  V. Zagrebnov,et al.  Trotter–Kato Product Formula and Operator-Norm Convergence , 1999 .

[3]  Stéphane Descombes,et al.  Convergence of a splitting method of high order for reaction-diffusion systems , 2001, Math. Comput..

[4]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[5]  Tosio Kato Perturbation theory for linear operators , 1966 .

[6]  Q. Sheng,et al.  A note on asymptotic splitting and its applications , 1994 .

[7]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[8]  Bernard Helffer,et al.  Around the Transfer Operator and the Trotter-Kato Formula , 1995 .

[9]  Boun Oumar Dia,et al.  Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées , 1996 .

[10]  Stéphane Descombes,et al.  An Operator-Theoretic Proof of an Estimate on the Transfer Operator* , 1999 .

[11]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[12]  Michelle Schatzman,et al.  Stability of the Peaceman–Rachford Approximation , 1999 .

[13]  J. Verwer,et al.  Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling , 1999 .

[14]  Michelle Schatzman,et al.  An Estimate of the Kac Transfer Operator , 1997 .

[15]  T. Ichinose,et al.  The Norm Estimate of the Difference Between the Kac Operator and Schrödinger Semigroup II: The General Case Including the Relativistic Case , 2000 .

[16]  Q. Sheng Global error estimates for exponential splitting , 1994 .

[17]  Boun Oumar Dia,et al.  Estimations sur la formule de Strang , 1995 .

[18]  C. Lubich,et al.  Error Bounds for Exponential Operator Splittings , 2000 .

[19]  V. Zagrebnov,et al.  Fractional powers of self-adjoint operators and Trotter-Kato product formula , 1999 .