Cosmic evolution of radio-AGN feedback: confronting models with data

Radio-mode feedback is a key ingredient in galaxy formation and evolution models, required to reproduce the observed properties of massive galaxies in the local Universe. We study the cosmic evolution of radio-active galactic nuclei (AGN) feedback out to z ∼ 2.5 using a sample of 9485 radio-excess AGN. We combine the evolving radio luminosity functions with a radio luminosity scaling relationship to estimate AGN jet kinetic powers and derive the cosmic evolution of the kinetic luminosity density, Ωkin (i.e. the volume-averaged heating output). Compared to all radio-AGN, low-excitation radio galaxies dominate the feedback activity out to z ∼ 2.5, with both these populations showing a constant heating output of $\Omega _{\rm {kin}} \approx (4\!-\!5) \times 10^{32}\, \rm {W\, Mpc^{-3}}$ across 0.5 < z < 2.5. We compare our observations to predictions from semi-analytical and hydrodynamical simulations, which broadly match the observed evolution in Ωkin, although their absolute normalization varies. Comparison to the Semi-Analytic Galaxy Evolution (sage) model suggests that radio-AGN may provide sufficient heating to offset radiative cooling losses, providing evidence for a self-regulated AGN feedback cycle. We integrate the kinetic luminosity density across cosmic time to obtain the kinetic energy density output from AGN jets throughout cosmic history to be $\sim 10^{50}\, \rm {J\, Mpc^{-3}}$. Compared to AGN winds, the kinetic energy density from AGN jets dominates the energy budget at z ≲ 2; this suggests that AGN jets play an important role in AGN feedback across most of cosmic history.

[1]  T. Heckman,et al.  A Global Inventory of Feedback , 2023, Galaxies.

[2]  M. Jarvis,et al.  MIGHTEE: the nature of the radio-loud AGN population , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  H. Rottgering,et al.  Measuring cavity powers of active galactic nuclei in clusters using a hybrid X-ray-radio method. A new window on feedback opened by subarcsecond LOFAR-VLBI observations , 2022, Astronomy &amp; Astrophysics.

[4]  M. Magliocchetti Hosts and environments: a (large-scale) radio history of AGN and star-forming galaxies , 2022, The Astronomy and Astrophysics Review.

[5]  H. Rottgering,et al.  Cosmic evolution of low-excitation radio galaxies in the LOFAR Two-meter Sky Survey Deep Fields , 2022, 2204.07588.

[6]  H. Rottgering,et al.  Deep sub-arcsecond wide-field imaging of the Lockman Hole field at 144 MHz , 2022, Nature Astronomy.

[7]  R. D. Baldi,et al.  Accretion mode versus radio morphology in the LOFAR Deep Fields , 2022, 2201.04433.

[8]  S. Veilleux,et al.  BASS XXXI: Outflow scaling relations in low redshift X-ray AGN host galaxies with MUSE , 2022, 2201.04149.

[9]  H. Schmitt,et al.  Gauging the effect of supermassive black holes feedback on quasar host galaxies , 2021, 2104.06223.

[10]  H. Rottgering,et al.  The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1 , 2020, Astronomy & Astrophysics.

[11]  M. Jarvis,et al.  The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1 , 2020, Astronomy & Astrophysics.

[12]  R. Davé,et al.  The radio galaxy population in the simba simulations , 2020, 2010.11225.

[13]  M. Hardcastle,et al.  Radio galaxies and feedback from AGN jets , 2020, New Astronomy Reviews.

[14]  V. Wild,et al.  Timing the earliest quenching events with a robust sample of massive quiescent galaxies at 2 < z < 5 , 2020, Monthly Notices of the Royal Astronomical Society.

[15]  Yen-Ting Lin,et al.  Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.

[16]  D. Narayanan,et al.  simba: Cosmological simulations with black hole growth and feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  M. Jarvis,et al.  Radio-loud AGN in the first LoTSS data release , 2018, Astronomy & Astrophysics.

[18]  D. Corre,et al.  CIGALE: a python Code Investigating GALaxy Emission , 2018, Astronomy & Astrophysics.

[19]  D. Smith,et al.  The LOFAR Two-metre Sky Survey , 2018, Astronomy & Astrophysics.

[20]  H. Rottgering,et al.  The environments of radio-loud AGN from the LOFAR Two-Metre Sky Survey (LoTSS) , 2018, 1811.07949.

[21]  M. Jarvis,et al.  The Stripe 82 1–2 GHz Very Large Array Snapshot Survey: host galaxy properties and accretion rates of radio galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  M. Hardcastle Interpreting radiative efficiency in radio-loud AGNs , 2018, 1804.04043.

[23]  Jonas Le Fevre,et al.  The XXL Survey , 2018, Astronomy & Astrophysics.

[24]  M. Hardcastle,et al.  Particle content, radio-galaxy morphology and jet power : all radio-loud AGN are not equal , 2018, 1801.10172.

[25]  H. Rottgering,et al.  LOFAR/H-ATLAS: the low-frequency radio luminosity-star formation rate relation , 2018, 1801.02629.

[26]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[27]  M. Hardcastle A simulation-based analytic model of radio galaxies , 2018, 1801.00667.

[28]  R. Davé,et al.  Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.

[29]  Matt J. Jarvis,et al.  Photometric redshifts for the next generation of deep radio continuum surveys – II. Gaussian processes and hybrid estimates , 2017, 1712.04476.

[30]  H. Rottgering,et al.  LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0 , 2017, 1711.10504.

[31]  H. Rottgering,et al.  Photometric redshifts for the next generation of deep radio continuum surveys – I. Template fitting , 2017, 1709.09183.

[32]  Cca,et al.  First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.

[33]  D. Croton,et al.  The many lives of active galactic nuclei–II: The formation and evolution of radio jets and their impact on galaxy evolution , 2017, 1706.06595.

[34]  G. Zamorani,et al.  The VLA-COSMOS 3 GHz Large Project: Cosmic evolution of radio AGN and implications for radio- mode feedback since z 5 , 2017, 1705.07090.

[35]  Liverpool John Moores University,et al.  Galaxy And Mass Assembly (GAMA): the environments of high- and low- excitation radio galaxies , 2017, 1705.04502.

[36]  H. Rottgering,et al.  The LOFAR window on star-forming galaxies and AGNs - curved radio SEDs and IR-radio correlation at 0 , 2017, 1704.06268.

[37]  O. Fèvre,et al.  The VLA-COSMOS 3~GHz Large Project: AGN and host-galaxy properties out to z≲6 , 2017, 1703.09720.

[38]  B. Weiner,et al.  The GOODS-N Jansky VLA 10 GHz Pilot Survey: Sizes of Star-forming μJY Radio Sources , 2017, 1702.06963.

[39]  R. Maiolino,et al.  AGN wind scaling relations and the co-evolution of black holes and galaxies , 2017, 1702.04507.

[40]  T. J. Dijkema,et al.  The LOFAR Two-metre Sky Survey , 2018, Astronomy & Astrophysics.

[41]  M. Hardcastle,et al.  A representative survey of the dynamics and energetics of FRII radio galaxies , 2017, 1701.05612.

[42]  D. Hogg,et al.  AGNfitter: A BAYESIAN MCMC APPROACH TO FITTING SPECTRAL ENERGY DISTRIBUTIONS OF AGNs , 2016, 1606.05648.

[43]  S. Kaviraj,et al.  The Horizon-AGN simulation: evolution of galaxy properties over cosmic time , 2016, 1605.09379.

[44]  C. Tadhunter Radio AGN in the local universe: unification, triggering and evolution , 2016, 1605.08773.

[45]  A. Hopkins,et al.  GAMA/WiggleZ: the 1.4 GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z = 0.75 , 2016, 1604.04332.

[46]  Caltech,et al.  Gravitational torque-driven black hole growth and feedback in cosmological simulations , 2016, 1603.08007.

[47]  Simon J. Mutch,et al.  SEMI-ANALYTIC GALAXY EVOLUTION (SAGE): MODEL CALIBRATION AND BASIC RESULTS , 2016, 1601.04709.

[48]  S. Shabala,et al.  Mutual distance dependence drives the observed jet-power–radio-luminosity scaling relations in radio galaxies , 2015, 1511.06007.

[49]  C. Simpson,et al.  The cosmic evolution of radio-AGN feedback to z = 1 , 2014, 1409.0263.

[50]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[51]  Timothy Heckman,et al.  The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe , 2014, 1403.4620.

[52]  D. Evans,et al.  An X-ray survey of the 2 Jy sample – I. Is there an accretion mode dichotomy in radio-loud AGN? , 2014, 1402.1770.

[53]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[54]  K. Blundell,et al.  Cosmological growth and feedback from supermassive black holes , 2013, 1305.0286.

[55]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies , 2013, 1308.6483.

[56]  M. Ruszkowski,et al.  Chaotic cold accretion on to black holes , 2013, 1301.3130.

[57]  M. Hardcastle,et al.  Numerical modelling of the lobes of radio galaxies in cluster environments – IV. Remnant radio galaxies , 2013, Monthly Notices of the Royal Astronomical Society.

[58]  P. Best,et al.  The relation between morphology, accretion modes and environmental factors in local radio AGN , 2013, 1301.1526.

[59]  P. Best,et al.  Effect of the interactions and environment on nuclear activity , 2012, 1212.4836.

[60]  D. L. Clements,et al.  The Spitzer Extragalactic Representative Volume Survey (SERVS): Survey Definition and Goals (PASP, 124, 714, [2012]) , 2012, 1206.4060.

[61]  J. Brinchmann,et al.  The triggering probability of radio-loud AGN: A comparison of high and low excitation radio galaxies in hosts of different colors , 2012, 1206.0578.

[62]  A. C. Fabian,et al.  Observational Evidence of AGN Feedback , 2012, 1204.4114.

[63]  T. Heckman,et al.  On the fundamental dichotomy in the local radio-AGN population , 2012, 1201.2397.

[64]  Prateek Sharma,et al.  Thermal instability and the feedback regulation of hot haloes in clusters, groups and galaxies , 2011, 1106.4816.

[65]  P. Hopkins,et al.  An analytic model of angular momentum transport by gravitational torques: from galaxies to massive black holes , 2010, 1007.2647.

[66]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[67]  V. Buat,et al.  Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.

[68]  M. Steinmetz,et al.  The role of black holes in galaxy formation and evolution , 2009, Nature.

[69]  D. Borgne,et al.  Radio-loud AGN in the XMM-LSS field II. A dichotomy in environment and accretion mode? , 2008 .

[70]  C. Carilli,et al.  Accepted for Publication in the Astrophysical Journal Radiative Efficiency and Content of Extragalactic Radio Sources: toward a Universal Scaling Relation between Jet Power and Radio Power , 2022 .

[71]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[72]  A. Merloni,et al.  A synthesis model for AGN evolution: supermassive black holes growth and feedback modes , 2008, 0805.2499.

[73]  Heidelberg,et al.  Measuring the accretion rate and kinetic luminosity functions of supermassive black holes , 2007, 0710.1718.

[74]  P. Nulsen,et al.  Heating Hot Atmospheres with Active Galactic Nuclei , 2007, 0709.2152.

[75]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[76]  A. Szalay,et al.  The Calibration and Data Products of the Galaxy Evolution Explorer , 2007, 0706.0755.

[77]  D. Evans,et al.  Hot and cold gas accretion and feedback in radio-loud active galaxies , 2007, astro-ph/0701857.

[78]  E. Sadler,et al.  Radio sources in the 6dFGS: local luminosity functions at 1.4 GHz for star-forming galaxies and radio-loud AGN , 2006, astro-ph/0612018.

[79]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[80]  G. Kauffmann,et al.  AGN-controlled cooling in elliptical galaxies , 2006 .

[81]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[82]  S. Migliari,et al.  Jet-dominated advective systems: radio and X-ray luminosity dependence on the accretion rate , 2006, astro-ph/0603731.

[83]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[84]  C. Crawford,et al.  A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction , 2005, astro-ph/0510476.

[85]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[86]  D. Fabricant,et al.  XBootes: An X-Ray Survey of the NDWFS Bootes Field. II. The X-Ray Source Catalog , 2005, astro-ph/0507615.

[87]  Ž. Ivezić,et al.  The host galaxies of radio-loud AGN: mass dependencies, gas cooling and AGN feedback , 2005, astro-ph/0506269.

[88]  Spain.,et al.  Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.

[89]  E. L. Wright,et al.  The Infrared Array Camera (IRAC) Shallow Survey , 2004 .

[90]  P. Nulsen,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/12/04 A SYSTEMATIC STUDY OF RADIO-INDUCED X-RAY CAVITIES IN CLUSTERS, GROUPS, AND GALAXIES , 2004 .

[91]  R. Maiolino,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[92]  S. Serjeant,et al.  SWIRE: The SIRTF Wide‐Area Infrared Extragalactic Survey , 2001, astro-ph/0305375.

[93]  D. Merritt,et al.  Black Hole Demographics from the M(BH)-sigma Relation , 2000, astro-ph/0009076.

[94]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[95]  K. Blundell,et al.  The emission line—radio correlation for radio sources using the 7C Redshift Survey , 1999, astro-ph/9905388.

[96]  R. Narayan,et al.  Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.

[97]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[98]  Will Saunders,et al.  On the likelihood ratio for source identification. , 1992 .

[99]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .

[100]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[101]  S. Zaroubi,et al.  The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1 , 2021 .