Non-body-fitted fluid-structure interaction: Divergence-conforming B-splines, fully-implicit dynamics, and variational formulation

Abstract Immersed boundary (IB) methods deal with incompressible visco-elastic solids interacting with incompressible viscous fluids. A long-standing issue of IB methods is the challenge of accurately imposing the incompressibility constraint at the discrete level. We present the divergence-conforming immersed boundary (DCIB) method to tackle this issue. The DCIB method leads to completely negligible incompressibility errors at the Eulerian level and various orders of magnitude of increased accuracy at the Lagrangian level compared to other IB methods. Furthermore, second-order convergence of the incompressibility error at the Lagrangian level is obtained as the discretization is refined. In the DCIB method, the Eulerian velocity–pressure pair is discretized using divergence-conforming B-splines, leading to inf–sup stable and pointwise divergence-free Eulerian solutions. The Lagrangian displacement is discretized using non-uniform rational B-splines, which enables to robustly handle large mesh distortions. The data transfer needed between the Eulerian and Lagrangian descriptions is performed at the quadrature level using the same spline basis functions that define the computational meshes. This conduces to a fully variational formulation, sharp treatment of the fluid–solid interface, and a 0.5 increase in the convergence rate of the Eulerian velocity and the Lagrangian displacement measured in L 2 norm in comparison with using discretized Dirac delta functions for the data transfer. By combining the generalized- α method and a block-iterative solution strategy, the DCIB method results in a fully-implicit discretization, which enables to take larger time steps. Various two- and three-dimensional problems are solved to show all the aforementioned properties of the DCIB method along with mesh-independence studies, verification of the numerical method by comparison with the literature, and measurement of convergence rates.

[1]  Yuri Bazilevs,et al.  Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling , 2017, Comput. Math. Appl..

[2]  Alessandro Reali,et al.  Isogeometric collocation using analysis-suitable T-splines of arbitrary degree , 2016 .

[3]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[4]  Ludovic Boilevin-Kayl,et al.  Numerical methods for immersed FSI with thin-walled structures , 2019, Computers & Fluids.

[5]  John A. Evans,et al.  Hierarchical B-spline complexes of discrete differential forms , 2017, IMA Journal of Numerical Analysis.

[6]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[8]  Chao-An Lin,et al.  Simulations of two sedimenting-interacting spheres with different sizes and initial configurations using immersed boundary method , 2015 .

[9]  R. Skalak,et al.  Strain energy function of red blood cell membranes. , 1973, Biophysical journal.

[10]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[11]  Yongjie Zhang,et al.  A hybrid variational‐collocation immersed method for fluid‐structure interaction using unstructured T‐splines , 2016 .

[12]  Hugo Casquero,et al.  NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow , 2017 .

[13]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[14]  Wenming Yang,et al.  Analytical and numerical study of tissue cryofreezing via the immersed boundary method , 2015 .

[15]  Hong Zhao,et al.  A fixed-mesh method for incompressible flow-structure systems with finite solid deformations , 2008, J. Comput. Phys..

[16]  Boyce E. Griffith,et al.  An Immersed Boundary method with divergence-free velocity interpolation and force spreading , 2017, J. Comput. Phys..

[17]  D. Boffi,et al.  FINITE ELEMENT APPROACH TO IMMERSED BOUNDARY METHOD WITH DIFFERENT FLUID AND SOLID DENSITIES , 2011 .

[18]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[19]  Luoding Zhu,et al.  An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments , 2011, J. Comput. Phys..

[20]  Roger A. Sauer,et al.  A stabilized finite element formulation for liquid shells and its application to lipid bilayers , 2016, J. Comput. Phys..

[21]  Chengjie Wang,et al.  Strongly coupled dynamics of fluids and rigid-body systems with the immersed boundary projection method , 2015, J. Comput. Phys..

[22]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[23]  D. Arnold Finite Element Exterior Calculus , 2018 .

[24]  Prosenjit Bagchi,et al.  Dynamics of red blood cells in oscillating shear flow , 2016, Journal of Fluid Mechanics.

[25]  Zhe Li,et al.  An immersed boundary-lattice Boltzmann method for single- and multi-component fluid flows , 2016, J. Comput. Phys..

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  Franck Nicoud,et al.  Validation of an immersed thick boundary method for simulating fluid-structure interactions of deformable membranes , 2016, J. Comput. Phys..

[28]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[29]  Boyce E. Griffith,et al.  Immersed Boundary Method for Variable Viscosity and Variable Density Problems Using Fast Constant-Coefficient Linear Solvers I: Numerical Method and Results , 2013, SIAM J. Sci. Comput..

[30]  T. Hughes,et al.  Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid–structure interaction , 2018, Mathematical Models and Methods in Applied Sciences.

[31]  Boyce E. Griffith,et al.  Quantifying performance in the medusan mechanospace with an actively swimming three-dimensional jellyfish model , 2017, Journal of Fluid Mechanics.

[32]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[33]  Boyce E. Griffith,et al.  Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions , 2012, International journal for numerical methods in biomedical engineering.

[34]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[35]  Tayfun E. Tezduyar,et al.  Ram-air parachute structural and fluid mechanics computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2016 .

[36]  Thomas J. R. Hughes,et al.  Hierarchically refined and coarsened splines for moving interface problems, with particular application to phase-field models of prostate tumor growth , 2017 .

[37]  Colin Thornton,et al.  Modeling gas-particle two-phase flows with complex and moving boundaries using DEM-CFD with an immersed boundary method , 2013 .

[38]  C. Pozrikidis,et al.  Modeling and Simulation of Capsules and Biological Cells , 2003 .

[39]  Lisandro Dalcin,et al.  Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model , 2015, Journal of Fluid Mechanics.

[40]  David Farrell,et al.  Immersed finite element method and its applications to biological systems. , 2006, Computer methods in applied mechanics and engineering.

[41]  Miguel A. Fernández,et al.  Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures , 2016 .

[42]  Michael A. Scott,et al.  A 3D isogeometric BE-FE analysis with dynamic remeshing for the simulation of a deformable particle in shear flows , 2017 .

[43]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[44]  Chennakesava Kadapa,et al.  A fictitious domain/distributed Lagrange multiplier based fluid–structure interaction scheme with hierarchical B-Spline grids , 2016 .

[45]  Yuri Bazilevs,et al.  Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows , 2017 .

[46]  Fotis Sotiropoulos,et al.  A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains , 2015, J. Comput. Phys..

[47]  Victor M. Calo,et al.  PetIGA: A Framework for High-Performance Isogeometric Analysis , 2013 .

[48]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[49]  Alessandro Reali,et al.  A study on unfitted 1D finite element methods , 2014, Comput. Math. Appl..

[50]  Victor M. Calo,et al.  PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces , 2016, J. Comput. Sci..

[51]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[52]  John A. Evans,et al.  Isogeometric divergence-conforming b-splines for the darcy-stokes-brinkman equations , 2013 .

[53]  Boyce E. Griffith,et al.  On the Volume Conservation of the Immersed Boundary Method , 2012 .

[54]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[55]  B. Griffith,et al.  An immersed boundary method for rigid bodies , 2014, 1505.07865.

[56]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[57]  Yuri Bazilevs,et al.  A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations , 2017 .

[58]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[59]  Patrick Patrick Anderson,et al.  A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves , 2004 .

[60]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[61]  Giancarlo Sangalli,et al.  Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..

[62]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[63]  Matthew G. Knepley,et al.  Composing Scalable Nonlinear Algebraic Solvers , 2015, SIAM Rev..

[64]  Boyce E. Griffith,et al.  Hybrid finite difference/finite element immersed boundary method , 2016, International journal for numerical methods in biomedical engineering.

[65]  S. Suresh,et al.  Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. , 2004, Mechanics & chemistry of biosystems : MCB.

[66]  Fotis Sotiropoulos,et al.  Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures , 2014, J. Comput. Phys..

[67]  Prosenjit Bagchi,et al.  A computational approach to modeling cellular-scale blood flow in complex geometry , 2017, J. Comput. Phys..

[68]  Boyce E. Griffith,et al.  A coupled mitral valve—left ventricle model with fluid–structure interaction , 2017, Medical engineering & physics.

[69]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[70]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[71]  Hector Gomez,et al.  Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells , 2017, Comput. Aided Des..

[72]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[73]  Wulf G. Dettmer,et al.  A stabilised immersed framework on hierarchical b-spline grids for fluid-flexible structure interaction with solid–solid contact , 2018, Computer Methods in Applied Mechanics and Engineering.

[74]  Ming-Chih Lai,et al.  An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier-Stokes flows , 2014, J. Comput. Phys..

[75]  D. Boffi,et al.  The immersed boundary method: a finite element approach , 2003 .

[76]  Victor M. Calo,et al.  A scalable block-preconditioning strategy for divergence-conforming B-spline discretizations of the Stokes problem , 2017 .

[77]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[78]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[79]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[80]  Peter K. Jimack,et al.  A One-Field Monolithic Fictitious Domain Method for Fluid-Structure Interactions , 2016, ArXiv.

[81]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[82]  Leo G. Rebholz,et al.  Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection , 2012 .

[83]  Charles S. Peskin,et al.  Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries , 1993 .

[84]  L. Heltai,et al.  On the hyper-elastic formulation of the immersed boundary method , 2008 .

[85]  I. Borazjani Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves , 2013 .

[86]  Hyung Jin Sung,et al.  Three-dimensional simulation of elastic capsules in shear flow by the penalty immersed boundary method , 2012, J. Comput. Phys..

[87]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[88]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[89]  L. Heltai,et al.  Mathematical Models and Methods in Applied Sciences Vol. 17, No. 10 (17) 1479–1505 c ○ World Scientific Publishing Company NUMERICAL STABILITY OF THE FINITE ELEMENT IMMERSED BOUNDARY METHOD , 2005 .

[90]  John A. Evans,et al.  Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.

[91]  Luca Heltai,et al.  On the CFL condition for the finite element immersed boundary method , 2007 .

[92]  Boyce E. Griffith,et al.  On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems , 2005 .

[93]  Hong Zhao,et al.  The dynamics of a vesicle in a wall-bound shear flow , 2011 .

[94]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[95]  Jochen Fröhlich,et al.  An improved immersed boundary method with direct forcing for the simulation of particle laden flows , 2012, J. Comput. Phys..

[96]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[97]  Erik W. Draeger,et al.  Numerical simulation of a compound capsule in a constricted microchannel , 2017, ICCS.

[98]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[99]  Luca Heltai,et al.  Benchmarking the immersed finite element method for fluid-structure interaction problems , 2013, Comput. Math. Appl..

[100]  Subra Suresh,et al.  Biomechanics of red blood cells in human spleen and consequences for physiology and disease , 2016, Proceedings of the National Academy of Sciences.

[101]  Christina Kluge,et al.  Fluid Structure Interaction , 2016 .

[102]  C. Peskin,et al.  Modeling and simulation of active suspensions containing large numbers of interacting micro-swimmers , 2013 .

[103]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[104]  Yoichiro Matsumoto,et al.  A full Eulerian finite difference approach for solving fluid-structure coupling problems , 2010, J. Comput. Phys..

[105]  L. Heltai,et al.  A natural framework for isogeometric fluid–structure interaction based on BEM–shell coupling , 2017, 1702.04502.

[106]  Lucy T. Zhang,et al.  Interpolation functions in the immersed boundary and finite element methods , 2010 .

[107]  Yuri Bazilevs,et al.  Three-dimensional dynamic simulation of elastocapillarity , 2018 .

[108]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[109]  Jian Du,et al.  An immersed boundary method for two-fluid mixtures , 2014, J. Comput. Phys..

[110]  José Manuel García-Aznar,et al.  The role of nuclear mechanics in cell deformation under creeping flows. , 2017, Journal of theoretical biology.