Understanding Shrinkage Estimators: From Zero to Oracle to James-Stein
暂无分享,去创建一个
[1] Bruce E. Hansen,et al. The Risk of James–Stein and Lasso Shrinkage , 2016 .
[2] William E. Strawderman,et al. Stein Estimation for Spherically Symmetric Distributions: Recent Developments , 2012, 1203.4724.
[3] T. Kubokawa. A Unified Approach to Improving Equivariant Estimators , 1994 .
[4] Stephen M. Stigler,et al. The 1988 Neyman Memorial Lecture: A Galtonian Perspective on Shrinkage Estimators , 1990 .
[5] George G. Judge,et al. A simple form for the inverse moments of non-central χ2 andF random variables and certain confluent hypergeometric functions , 1984 .
[6] C. Morris. Parametric Empirical Bayes Inference: Theory and Applications , 1983 .
[7] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[8] James O. Berger,et al. Improving on Inadmissible Estimators in Continuous Exponential Families with Applications to Simultaneous Estimation of Gamma Scale Parameters , 1980 .
[9] B. Efron,et al. Stein's Paradox in Statistics , 1977 .
[10] B. Efron. Biased Versus Unbiased Estimation , 1975 .
[11] E. Fama,et al. Risk, Return, and Equilibrium: Empirical Tests , 1973, Journal of Political Economy.
[12] B. Efron,et al. Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .
[13] L. Brown. On the Admissibility of Invariant Estimators of One or More Location Parameters , 1966 .
[14] D. Blackwell. On the Translation Parameter Problem for Discrete Variables , 1951 .
[15] C. Srinivasan,et al. Stein's Phenomenon , 2011 .
[16] Michel Daoud Yacoub,et al. The multivariate α-μ distribution , 2010, IEEE Transactions on Wireless Communications.
[17] J. Neyman,et al. INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .
[18] C. Stein,et al. Estimation with Quadratic Loss , 1992 .