Safety of Antidiabetic Therapies on Bone

[1]  Manna Zhang,et al.  Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: a meta-analysis of randomized controlled trials , 2015, Endocrine.

[2]  Yun-fa Jiang,et al.  Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. , 2014, Bone.

[3]  W. Shou,et al.  FKBP51 reciprocally regulates GRα and PPARγ activation via the Akt-p38 pathway. , 2014, Molecular endocrinology.

[4]  Thuy-Tien L. Dam,et al.  Fracture risk in diabetic elderly men: the MrOS study , 2014, Diabetologia.

[5]  B. Lecka-Czernik,et al.  Partial Agonist, Telmisartan, Maintains PPARγ Serine 112 Phosphorylation, and Does Not Affect Osteoblast Differentiation and Bone Mass , 2014, PloS one.

[6]  D. Chappard,et al.  Use of glucagon‐like peptide‐1 receptor agonists and bone fractures: A meta‐analysis of randomized clinical trials (胰高血糖素样肽‐1受体激动剂的使用与骨折的关系:一项对随机临床试验的meta分析) , 2014, Journal of diabetes.

[7]  I. Reid,et al.  The skeletal effects of pioglitazone in type 2 diabetes or impaired glucose tolerance: a randomized controlled trial. , 2014, European journal of endocrinology.

[8]  J. Bolinder,et al.  Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin , 2014, Diabetes, obesity & metabolism.

[9]  Alfonso T. Perez,et al.  Effects of pioglitazone on bone in postmenopausal women with impaired fasting glucose or impaired glucose tolerance: a randomized, double-blind, placebo-controlled study. , 2013, The Journal of clinical endocrinology and metabolism.

[10]  K. Lapane,et al.  Sulfonylureas and Risk of Falls and Fractures: A Systematic Review , 2013, Drugs & Aging.

[11]  R. Eastell,et al.  Rosiglitazone decreases bone mineral density and increases bone turnover in postmenopausal women with type 2 diabetes mellitus. , 2013, The Journal of clinical endocrinology and metabolism.

[12]  G. López-Gallardo,et al.  Serum levels of bone resorption markers are decreased in patients with type 2 diabetes , 2013, Acta Diabetologica.

[13]  P. Esbrit,et al.  Amylin exerts osteogenic actions with different efficacy depending on the diabetic status , 2013, Molecular and Cellular Endocrinology.

[14]  B. Lecka-Czernik,et al.  β-Catenin Directly Sequesters Adipocytic and Insulin Sensitizing Activities but Not Osteoblastic Activity of PPARγ2 in Marrow Mesenchymal Stem Cells , 2012, PloS one.

[15]  J. Bolinder,et al.  Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin , 2012, Diabetes, obesity & metabolism.

[16]  P. Donnan,et al.  Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs , 2012, Diabetologia.

[17]  C. Conner,et al.  Association between hypoglycaemic events and fall‐related fractures in Medicare‐covered patients with type 2 diabetes , 2012, Diabetes, obesity & metabolism.

[18]  M. Diamant,et al.  Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical markers of bone turnover in men with type 2 diabetes mellitus. , 2012, European journal of endocrinology.

[19]  C. Mantzoros,et al.  Selective PPARγ modulator INT131 normalizes insulin signaling defects and improves bone mass in diet-induced obese mice. , 2012, American journal of physiology. Endocrinology and metabolism.

[20]  J. Bilezikian,et al.  A randomized, parallel group, double‐blind, multicentre study comparing the efficacy and safety of Avandamet (rosiglitazone/metformin) and metformin on long‐term glycaemic control and bone mineral density after 80 weeks of treatment in drug‐naïve type 2 diabetes mellitus patients , 2011, Diabetes, obesity & metabolism.

[21]  A. Cortizo,et al.  Metformin prevents anti-osteogenic in vivo and ex vivo effects of rosiglitazone in rats. , 2011, European journal of pharmacology.

[22]  Weidong Yong,et al.  Protein Phosphatase 5 Mediates Lipid Metabolism through Reciprocal Control of Glucocorticoid Receptor and Peroxisome Proliferator-activated Receptor-γ (PPARγ)* , 2011, The Journal of Biological Chemistry.

[23]  Song Xu,et al.  Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats , 2011, Journal of cellular biochemistry.

[24]  Scott A. Busby,et al.  Anti-Diabetic Actions of a Non-Agonist PPARγ Ligand Blocking Cdk5-Mediated Phosphorylation , 2011, Nature.

[25]  E. Vittinghoff,et al.  Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. , 2011, JAMA.

[26]  Y. D. Kim,et al.  Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. , 2011, Bone.

[27]  T. Clemens,et al.  The osteoblast: An insulin target cell controlling glucose homeostasis , 2011, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[28]  M. Taskinen,et al.  Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes , 2011, Diabetes, obesity & metabolism.

[29]  H. Stødkilde-Jørgensen,et al.  Rosiglitazone decreases bone mass and bone marrow fat. , 2011, The Journal of clinical endocrinology and metabolism.

[30]  D. Drucker,et al.  Differential effects of PPAR-{gamma} activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice. , 2011, Endocrinology.

[31]  L. Bonewald,et al.  The Amazing Osteocyte , 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[32]  B. Lecka-Czernik Aleglitazar, a dual PPARα and PPARγ agonist for the potential oral treatment of type 2 diabetes mellitus. , 2010, IDrugs : the investigational drugs journal.

[33]  Jesse C. Crosson,et al.  Thiazolidinediones and fractures: evidence from translating research into action for diabetes. , 2010, The Journal of clinical endocrinology and metabolism.

[34]  B. Lecka-Czernik Bone Loss in Diabetes: Use of Antidiabetic Thiazolidinediones and Secondary Osteoporosis , 2010, Current osteoporosis reports.

[35]  P. Sanwald-Ducray,et al.  Pharmacokinetics, Pharmacodynamics, and Tolerability of Aleglitazar in Patients With Type 2 Diabetes: Results From a Randomized, Placebo‐Controlled Clinical Study , 2010, Clinical pharmacology and therapeutics.

[36]  Chao Wan,et al.  Insulin Receptor Signaling in Osteoblasts Regulates Postnatal Bone Acquisition and Body Composition , 2010, Cell.

[37]  R. DePinho,et al.  Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism , 2010, Cell.

[38]  Patrick R. Griffin,et al.  Obesity-linked phosphorylation of PPARγ by cdk5 is a direct target of the anti-diabetic PPARγ ligands , 2010, Nature.

[39]  C. Glass,et al.  Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells , 2010, Nature Reviews Immunology.

[40]  N. Ebraheim,et al.  Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1. , 2010, Bone.

[41]  C. Ayers,et al.  The Peroxisome Proliferator-Activated Receptor-γ Agonist Rosiglitazone Increases Bone Resorption in Women with Type 2 Diabetes: A Randomized, Controlled Trial , 2010, Calcified Tissue International.

[42]  A. Klibanski,et al.  Reduced amylin levels are associated with low bone mineral density in women with anorexia nervosa. , 2010, Bone.

[43]  I. Kanazawa,et al.  Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus , 2010, Journal of Bone and Mineral Metabolism.

[44]  A. C. Yazici,et al.  ORIGINAL ARTICLE: Effects of rosiglitazone on bone mineral density and remodelling parameters in Postmenopausal diabetic women: a 2‐year follow‐up study , 2010, Clinical endocrinology.

[45]  S. Yano,et al.  Baseline atherosclerosis parameter could assess the risk of bone loss during pioglitazone treatment in type 2 diabetes mellitus , 2010, Osteoporosis International.

[46]  E. Margaret Warton,et al.  The Association Between the Number of Prescription Medications and Incident Falls in a Multi-ethnic Population of Adult Type-2 Diabetes Patients: The Diabetes and Aging Study , 2010, Journal of General Internal Medicine.

[47]  G. Divine,et al.  Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. , 2010, The Journal of clinical endocrinology and metabolism.

[48]  P. Elliott,et al.  Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database , 2009, BMJ : British Medical Journal.

[49]  B. Lecka-Czernik Bone as a target of type 2 diabetes treatment. , 2009, Current opinion in investigational drugs.

[50]  Ian J. Douglas,et al.  The Risk of Fractures Associated with Thiazolidinediones: A Self-controlled Case-Series Study , 2009, PLoS medicine.

[51]  B. Carleton,et al.  Thiazolidinediones and fractures in men and women. , 2009, Archives of internal medicine.

[52]  M. Good,et al.  Distal upper and lower limb fractures associated with thiazolidinedione use. , 2009, The American journal of managed care.

[53]  T. Stürmer,et al.  A cohort study of thiazolidinediones and fractures in older adults with diabetes. , 2009, The Journal of clinical endocrinology and metabolism.

[54]  Armin Ruf,et al.  Design and Biological Evaluation of Novel, Balanced Dual PPARα/γ Agonists , 2009, ChemMedChem.

[55]  G. Churchill,et al.  PPARγ2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells , 2009, Journal of cellular biochemistry.

[56]  C. Furberg,et al.  Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis , 2009, Canadian Medical Association Journal.

[57]  U. Wesley,et al.  Suppression of neuroblastoma growth by dipeptidyl peptidase IV: Relevance of chemokine regulation and caspase activation , 2008, Oncogene.

[58]  T. Therneau,et al.  Fracture Risk in Type 2 Diabetes: Update of a Population‐Based Study , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[59]  Peter Tontonoz,et al.  Fat and beyond: the diverse biology of PPARgamma. , 2008, Annual review of biochemistry.

[60]  A. Hermann,et al.  Association of pioglitazone treatment with decreased bone mineral density in obese premenopausal patients with polycystic ovary syndrome: a randomized, placebo-controlled trial. , 2008, The Journal of clinical endocrinology and metabolism.

[61]  H. Jick,et al.  Use of thiazolidinediones and fracture risk. , 2008, Archives of internal medicine.

[62]  S. Yano,et al.  Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. , 2008, The Journal of clinical endocrinology and metabolism.

[63]  B. Zinman,et al.  Rosiglitazone-Associated Fractures in Type 2 Diabetes , 2008, Diabetes Care.

[64]  D. Drucker,et al.  The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. , 2008, Endocrinology.

[65]  A. Grey Skeletal consequences of thiazolidinedione therapy , 2008, Osteoporosis International.

[66]  Y. Wan,et al.  PPAR-γ regulates osteoclastogenesis in mice , 2007, Nature Medicine.

[67]  D. Balzi,et al.  Bone Fractures and Hypoglycemic Treatment in Type 2 Diabetic Patients , 2007, Diabetes Care.

[68]  A. Lincoff,et al.  Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. , 2007, JAMA.

[69]  S. Cummings,et al.  Recommendations for the Clinical Evaluation of Agents for Treatment of Osteoporosis: Consensus of an Expert Panel Representing the American Society for Bone and Mineral Research (ASBMR), the International Society for Clinical Densitometry (ISCD), and the National Osteoporosis Foundation (NOF) , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[70]  W. Willett,et al.  Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. , 2007, American journal of epidemiology.

[71]  M. McKee,et al.  Endocrine Regulation of Energy Metabolism by the Skeleton , 2007, Cell.

[72]  K. Wolski,et al.  Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. , 2007, The New England journal of medicine.

[73]  L. Suva,et al.  Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. , 2007, Endocrinology.

[74]  W. Bollag,et al.  Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. , 2007, Bone.

[75]  I. Reid,et al.  The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. , 2007, The Journal of clinical endocrinology and metabolism.

[76]  J. Holst,et al.  Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. , 2007, Bone.

[77]  W. Bollag,et al.  Effects of glucose-dependent insulinotropic peptide on osteoclast function. , 2007, American journal of physiology. Endocrinology and metabolism.

[78]  G. Churchill,et al.  Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. , 2007, Endocrinology.

[79]  D. Drucker The role of gut hormones in glucose homeostasis. , 2007, The Journal of clinical investigation.

[80]  B. Zinman,et al.  Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. , 2006, The New England journal of medicine.

[81]  R. Průša,et al.  The role of amylin and related peptides in osteoporosis. , 2006, Clinica chimica acta; international journal of clinical chemistry.

[82]  C. Lengner,et al.  Networks and hubs for the transcriptional control of osteoblastogenesis , 2006, Reviews in Endocrine and Metabolic Disorders.

[83]  S. Cummings,et al.  Thiazolidinedione use and bone loss in older diabetic adults. , 2006, The Journal of clinical endocrinology and metabolism.

[84]  Suzanne G. Leveille,et al.  Risk factors for falls in older disabled women with diabetes: the women's health and aging study. , 2005, The journals of gerontology. Series A, Biological sciences and medical sciences.

[85]  I. Reid,et al.  Nutrition‐Related Peptides and Bone Homeostasis , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[86]  D. Vashishth Collagen glycation and its role in fracture properties of bone. , 2005, Journal of musculoskeletal & neuronal interactions.

[87]  R. Eastell,et al.  Potential Role of Pancreatic and Enteric Hormones in Regulating Bone Turnover , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[88]  P. Vestergaard,et al.  Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk , 2005, Diabetologia.

[89]  A. Parfitt,et al.  Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. , 2005, Endocrinology.

[90]  U. Wesley,et al.  Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. , 2005, Cancer research.

[91]  B. Lecka-Czernik,et al.  Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR‐γ2 transcription factor and TGF‐β/BMP signaling pathways , 2004, Aging cell.

[92]  C. Deacon Circulation and Degradation of GIP and GLP-1 , 2004, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[93]  J. Auwerx,et al.  Enhanced bone formation in lipodystrophic PPARγhyp/hyp mice relocates haematopoiesis to the spleen , 2004, EMBO reports.

[94]  D. Miao,et al.  Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. , 2004, The Journal of endocrinology.

[95]  K. Seuwen,et al.  Enhanced Marrow Adipogenesis and Bone Resorption in Estrogen-Deprived Rats Treated with the PPARgamma Agonist BRL49653 (Rosiglitazone) , 2004, Calcified Tissue International.

[96]  Kozo Nakamura,et al.  PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. , 2004, The Journal of clinical investigation.

[97]  Abdulmajeed Al Abdukareem Randomized, placebo-controlled trial , 2004, Annals of Saudi medicine.

[98]  R. Průša,et al.  Amylin fasting plasma levels are decreased in patients with osteoporosis , 2004, Osteoporosis International.

[99]  S. Teitelbaum,et al.  Genetic regulation of osteoclast development and function , 2003, Nature Reviews Genetics.

[100]  Pamela J Schreiner,et al.  Older women with diabetes have a higher risk of falls: a prospective study. , 2002, Diabetes care.

[101]  Catherine M. Verfaillie,et al.  Pluripotency of mesenchymal stem cells derived from adult marrow , 2002, Nature.

[102]  J. Lehmann,et al.  Printed in U.S.A. Copyright © 2002 by The Endocrine Society Divergent Effects of Selective Peroxisome Proliferator- Activated Receptor-�2 Ligands on Adipocyte Versus Osteoblast Differentiation , 2022 .

[103]  B. Spiegelman,et al.  PPARγ: a Nuclear Regulator of Metabolism, Differentiation, and Cell Growth* , 2001, The Journal of Biological Chemistry.

[104]  J. Filmus,et al.  Transforming Growth Factor-α Prevents Detachment-induced Inhibition of c-Src Kinase Activity, Bcl-XLDown-regulation, and Apoptosis of Intestinal Epithelial Cells* , 2001, The Journal of Biological Chemistry.

[105]  H. Nakauchi,et al.  The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype , 2001, Nature Medicine.

[106]  I. Reid,et al.  Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. , 2001, Bone.

[107]  G. Karsenty Minireview: transcriptional control of osteoblast differentiation. , 2001, Endocrinology.

[108]  R. Cumming,et al.  Diabetes and risk of fracture: The Blue Mountains Eye Study. , 2001, Diabetes care.

[109]  Mara Riminucci,et al.  Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications , 2001, Stem cells.

[110]  R. Jilka,et al.  Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2 , 1999, Journal of cellular biochemistry.

[111]  P. Nawroth,et al.  The Effect of Pramlintide (Amylin Analogue) Treatment on Bone Metabolism and Bone Density in Patients with Type 1 Diabetes Mellitus , 1999, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[112]  G. Karsenty,et al.  Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation , 1997, Cell.

[113]  Makoto Sato,et al.  Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation owing to Maturational Arrest of Osteoblasts , 1997, Cell.

[114]  D. Rao,et al.  Bone Loss and Bone Turnover in Diabetes , 1995, Diabetes.

[115]  B. Spiegelman,et al.  Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor , 1994, Cell.

[116]  A. Parfitt Osteonal and hemi‐osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone , 1994, Journal of cellular biochemistry.

[117]  J. A. Garcia-Salcedo,et al.  Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. , 2012, The Journal of clinical endocrinology and metabolism.

[118]  B. Zinman,et al.  Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. , 2010, The Journal of clinical endocrinology and metabolism.

[119]  L. Higgins,et al.  Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation. , 2010, The American journal of clinical nutrition.

[120]  M. Goldenberg Pharmaceutical approval update. , 2009, P & T : a peer-reviewed journal for formulary management.

[121]  P. Vestergaard,et al.  Diabetes and Its Complications and Their Relationship with Risk of Fractures in Type 1 and 2 Diabetes , 2008, Calcified Tissue International.

[122]  U. Wesley,et al.  Dipeptidyl peptidase IV (DPPIV), a candidate tumor suppressor gene in melanomas is silenced by promoter methylation. , 2008, Frontiers in bioscience : a journal and virtual library.

[123]  I. Reid,et al.  The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. , 2007, The Journal of clinical endocrinology and metabolism.

[124]  Catherine M. Verfaillie,et al.  Pluripotency of mesenchymal stem cells derived from adult marrow , 2007, Nature.

[125]  G. Churchill,et al.  Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. , 2007, Endocrinology.

[126]  Y. Wan,et al.  PPAR-gamma regulates osteoclastogenesis in mice. , 2007, Nature medicine.

[127]  L. Suva,et al.  Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat. , 2006, Bone.

[128]  H. Schirmer,et al.  Diabetes mellitus and the risk of non-vertebral fractures: the Tromsø study , 2005, Osteoporosis International.

[129]  J. Aubin Regulation of Osteoblast Formation and Function , 2004, Reviews in Endocrine and Metabolic Disorders.

[130]  L. Suva,et al.  Bone is a target for the antidiabetic compound rosiglitazone. , 2004, Endocrinology.

[131]  J. Lehmann,et al.  Divergent Effects of Selective Peroxisome Proliferator-Activated Receptor- (cid:1) 2 Ligands on Adipocyte Versus Osteoblast Differentiation , 2002 .

[132]  A. Wolffe,et al.  PPARgamma knockdown by engineered transcription factors: exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. , 2002, Genes & development.

[133]  A. Wolffe,et al.  PPARγ knockdown by engineered transcription factors: exogenous PPARγ2 but not PPARγ1 reactivates adipogenesis , 2002 .

[134]  B. Spiegelman,et al.  PPARgamma : a nuclear regulator of metabolism, differentiation, and cell growth. , 2001, The Journal of biological chemistry.

[135]  S. Cummings,et al.  Older women with diabetes have an increased risk of fracture: a prospective study. , 2001, The Journal of clinical endocrinology and metabolism.

[136]  B. Spiegelman,et al.  Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. , 1994, Cell.