Notes on equivariant categories

We give a mostly self-contained introduction to equivariant categories with a focus on the derived category of coherent sheaves. We discuss the following topics: indecomposability and faithful actions, Serre functor, a criterion to be Calabi--Yau, Hochschild cohomology, and obstructions for a subgroup of the group of auto-equivalences to act.

[1]  G. Oberdieck,et al.  Equivariant categories and fixed loci of holomorphic symplectic varieties , 2020, 2006.13899.

[2]  Alexander Perry Hochschild cohomology and group actions , 2018, Mathematische Zeitschrift.

[3]  E. Shinder Group actions on categories and Elagin’s theorem revisited , 2017, 1706.01714.

[4]  P. Stellari,et al.  A tour about existence and uniqueness of dg enhancements and lifts , 2016, 1605.00490.

[5]  H. Nuer Projectivity and birational geometry of Bridgeland moduli spaces on an Enriques surface , 2014, 1406.0908.

[6]  Chuangxun Cheng A character theory for projective representations of finite groups , 2015 .

[7]  Alexander Perry,et al.  Derived categories of cyclic covers and their branch divisors , 2014, 1411.1799.

[8]  A. Elagin ON EQUIVARIANT TRIANGULATED CATEGORIES , 2014, 1403.7027.

[9]  Markus Zowislok Subvarieties of moduli spaces of sheaves via finite coverings , 2012, 1210.4794.

[10]  Damien Calaque,et al.  Căldăraru’s conjecture and Tsygan’s formality , 2009, 0904.4890.

[11]  Emanuele Macrì,et al.  Inducing stability conditions , 2007, 0705.3752.

[12]  Adam-Christiaan van Roosmalen Abelian 1-Calabi-Yau Categories , 2007, math/0703457.

[13]  M. Kapranov,et al.  Representation and character theory in 2-categories , 2006, math/0602510.

[14]  D. Ploog Equivariant autoequivalences for finite group actions , 2005, math/0508625.

[15]  M. Romagny Group Actions on Stacks and Applications , 2005 .

[16]  I. Waschkies The stack of microlocal perverse sheaves , 2004 .

[17]  T. Bridgeland Stability conditions on triangulated categories , 2002, math/0212237.

[18]  G. Ellis Spaces with finitely many non-trivial homotopy groups all of which are finite , 1997 .

[19]  D. Orlov,et al.  Equivalences of derived categories and K3 surfaces , 1996, alg-geom/9606006.

[20]  Leonard Evens,et al.  Cohomology of groups , 1991, Oxford mathematical monographs.