Free surface CFD prediction of components of Ship Resistance for KCS

A numerical methodology has been developed to accurately simulate the flow around a towed hull. A mesh structure has been developed that efficiently captures the free surface wave pattern, whilst allowing for easy implementation of a propeller model in the future. The numerical wave pattern generated has been validated against experimental data showing good correlation. An assessment of the aero and hydrodynamic components of drag highlighted the need for more detailed information about the ‘above water’ experimental set up from towing tank experiments, if accurate validation is to be achieved. The impact of two different turbulence models on the components of resistance has been evaluated, concluding that the Baseline (BSL) Reynolds stress model provided the best comparison to experimental data. It is therefore now envisaged that this numerical methodology can be used to evaluate the impact a propeller model has on the free surface near the stern and how this affects the resistance components of a self propelled ship.

[1]  Frederick Stern,et al.  Flow pattern around an appended tanker hull form in simple maneuvering conditions , 2005 .

[2]  Roozbeh Panahi,et al.  DEVELOPMENT OF A VOF-FRACTIONAL STEP SOLVER FOR FLOATING BODY MOTION SIMULATION , 2006 .

[3]  Jean-Baptiste Leroux Étude expérimentale en tunnel hydrodynamique des instabilités de la cavitation par poche sur hydrofoil par la mesure spatio-temporelle du champ de pression pariétal , 2003 .

[4]  Rupesh Kotapati-Apparao,et al.  Prediction of a Prolate Spheroid Undergoing a Pitchup Maneuver , 2003 .

[5]  R. I. Issa,et al.  A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes , 1999 .

[6]  Murray Rudman,et al.  VOLUME-OF-FLUID CALCULATION OF HEAT OR MASS TRANSFER ACROSS DEFORMING INTERFACES IN TWO-FLUID FLOW , 2002 .

[7]  Roozbeh Panahi,et al.  Towards simulation of 3D nonlinear high-speed vessels motion , 2009 .

[8]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[9]  Stephen R. Turnock,et al.  Accurate Capture of Propeller-Rudder Interaction using a Coupled Blade Element Momentum-RANS Approach , 2010 .

[10]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[11]  Odd M. Faltinsen,et al.  Hydrodynamics of High-Speed Marine Vehicles , 2006 .

[12]  Frédéric Alauzet,et al.  High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..

[13]  Ho-Hwan Chun,et al.  Numerical flow simulation of flush type intake duct of waterjet , 2005 .

[14]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[15]  Gaute Storhaug,et al.  Experimental investigation of wave induced vibrations and their effect on the fatigue loading of ships , 2007 .

[16]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[17]  商船學校 Marine propellers and propulsion , 1913 .

[18]  Suak-Ho Van,et al.  Wind tunnel tests on flow characteristics of the KRISO 3,600 TEU containership and 300K VLCC double-deck ship models , 2003 .

[19]  Nikolai Kornev,et al.  Development of hybrid URANS–LES methods for flow simulation in the ship stern area , 2011 .

[20]  Kai-Jia Han,et al.  A Procedure for Optimizing Cavitating Propeller Blades in a Given Wake , 2005 .

[21]  D. M. Murray,et al.  The numerical solution of the pre-elimination models of cable configurations , 1984 .

[22]  H. Murai,et al.  THEORETICAL INVESTIGATION OF THE AERODYNAMICS OF DOUBLE MEMBRANE SAILWING AIRFOIL SECTIONS , 1980 .

[23]  Jørgen Juncher Jensen,et al.  Springing response due to bidirectional wave excitation , 2005 .

[24]  P. Durbin Near-wall turbulence closure modeling without “damping functions” , 1991, Theoretical and Computational Fluid Dynamics.

[25]  H. Schneekluth,et al.  Ship Design for Efficiency and Economy , 1987 .

[26]  Ho-Hwan Chun,et al.  Numerical flow and performance analysis of waterjet propulsion system , 2005 .

[27]  Volker Bertram,et al.  A 3-d Rankine Source Seakeeping Method , 2009 .

[28]  Yeng-Yung Tsui,et al.  Flux-blending schemes for interface capture in two-fluid flows , 2009 .

[29]  Michel Visonneau,et al.  An interface capturing method for free-surface hydrodynamic flows , 2007 .

[30]  G. Jensen,et al.  Berechnung der stationären Potentialströmung um ein Schiff unter Berücksichtigung der nichtlinearen Randbedingung an der Wasseroberfläche , 1988 .

[31]  Hideyuki Seto On Rationalization of a Staggered Collocation Rankine Source Scheme , 1995 .

[32]  G. De Matteis,et al.  Nonlinear Aerodynamics of a Two-Dimensional Membrane Airfoil with Separation , 1986 .

[33]  Frederick Stern,et al.  RANS Maneuvering Simulation of Esso Osaka With Rudder and a Body-Force Propeller , 2005 .

[34]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[35]  D. H. Kim,et al.  Measurement of flows around modern commercial ship models , 2001 .

[36]  Takanori Hino,et al.  Computation of Viscous Flows around a Wigley Hull Running in Incident Waves by use of Unstructured Grid Method , 2002 .

[37]  Yeng-Yung Tsui,et al.  A Pressure-Based Unstructured-Grid Algorithm Using High-Resolution Schemes for All-Speed Flows , 2008 .

[38]  Stephen R. Turnock,et al.  Improvement to body impact predictions using CFD through analysis of an unsteady boundary layer. , 2008 .

[39]  Jean-Baptiste Leroux,et al.  A Transpiration Velocities Based Sheet Cavitation Model , 2009 .

[40]  Takanori Hino,et al.  A 3D Unstructured Grid Method for Incompressible Viscous Flows , 1997 .

[41]  M. Hoekstra,et al.  Numerical simulation of ship stern flows with a space-marching Navier-Stokes method , 1999 .

[42]  G. Storhaug,et al.  Springing/whipping response of a large ocean going vessel - A comparison between numerical simulations and full-scale measurements , 2003 .

[43]  Nikolai Kornev,et al.  Simulation of the Dynamics of an Autonomously Acting Small Catamaran for Search and Rescue Process , 2010 .

[44]  N.W.H. Bulten,et al.  Numerical analysis of a waterjet propulsion system , 2006 .

[45]  H. Curtiss,et al.  Aerodynamic properties of a two-dimensional inextensible flexible airfoil , 1983 .

[46]  Kazuhiro Nakahashi,et al.  A coarse grid generation algorithm for agglomeration multigrid method on unstructured grids , 1998 .

[47]  Odd M. Faltinsen,et al.  A BEM‐level set domain‐decomposition strategy for non‐linear and fragmented interfacial flows , 2006 .

[48]  Michel Visonneau,et al.  Adaptive Grid Refinement for Hydrodynamic Flow Simulation , 2009 .

[49]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[50]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[51]  M. Darwish,et al.  Convective Schemes for Capturing Interfaces of Free-Surface Flows on Unstructured Grids , 2006 .

[52]  C. Lincoln Crane Maneuvering Trials of a 278 000-DWT Tanker in Shallow and Deep , 2007 .

[53]  Dracos Vassalos,et al.  A RANS-based technique for simulation of the flow near a rolling cylinder at the free surface , 2000 .

[54]  Karsten Wolff Ermittlung der Manövriereigenschaften fünf repräsentativer Schiffstypen mit Hilfe von CPMC-Modellversuchen , 1981 .

[55]  Stephen R. Turnock,et al.  Impact of a free-falling wedge with water: synchronized visualization, pressure and acceleration measurements , 2010 .

[56]  H Soding A METHOD FOR ACCURATE FORCE CALCULATIONS IN POTENTIAL FLOW , 1993 .

[57]  M. Visonneau,et al.  Adaptive Grid Refinement Applied to RANS Ship Flow Computation , 2010 .

[58]  S. Mishima Design of cavitating propeller blades in non-uniform flow by numerical optimization , 1996 .

[59]  Roger L. Simpson,et al.  Unsteady three-dimensional crossflow separation measurements on a prolate spheroid undergoing time-dependent maneuvers , 1997 .

[60]  Shin Hyung Rhee,et al.  Numerical Simulation of Unsteady Turbulent Flow Around Maneuvering Prolate Spheroid , 2002 .

[61]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[62]  Stuart E. Rogers,et al.  Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations , 1990 .

[63]  Chaoqun Liu,et al.  Preconditioned Multigrid Methods for Unsteady Incompressible Flows , 1997 .

[64]  Shin Hyung Rhee,et al.  Assessment of eight turbulence models for a three-dimensional boundary layer involving crossflow and streamwise vortices , 2002 .

[65]  Moshe Rosenfeld,et al.  A solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems , 1988 .

[66]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .