Ripser: efficient computation of Vietoris–Rips persistence barcodes

We present an algorithm for the computation of Vietoris–Rips persistence barcodes and describe its implementation in the software Ripser. The method relies on implicit representations of the coboundary operator and the filtration order of the simplices, avoiding the explicit construction and storage of the filtration coboundary matrix. Moreover, it makes use of apparent pairs, a simple but powerful method for constructing a discrete gradient field from a total order on the simplices of a simplicial complex, which is also of independent interest. Our implementation shows substantial improvements over previous software both in time and memory usage.

[1]  Dmitriy Morozov,et al.  Dualities in persistent (co)homology , 2011, ArXiv.

[2]  Chao Chen,et al.  An output-sensitive algorithm for persistent homology , 2013, Comput. Geom..

[3]  Robert E. Tarjan,et al.  A Class of Algorithms which Require Nonlinear Time to Maintain Disjoint Sets , 1979, J. Comput. Syst. Sci..

[4]  J. Latschev Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold , 2001 .

[5]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[6]  Chao Chen,et al.  Persistent Homology Computation with a Twist , 2011 .

[7]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[8]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[9]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[10]  S. A. Barannikov,et al.  The framed Morse complex and its invariants , 1994 .

[11]  Matthew Kahle,et al.  Random Geometric Complexes , 2009, Discret. Comput. Geom..

[12]  Emil Sköldberg,et al.  Morse theory from an algebraic viewpoint , 2005 .

[13]  Emanuela Merelli,et al.  jHoles: A Tool for Understanding Biological Complex Networks via Clique Weight Rank Persistent Homology , 2014, CS2Bio.

[14]  Vin de Silva,et al.  Persistent Cohomology and Circular Coordinates , 2009, SCG '09.

[15]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[16]  Ulrich Bauer,et al.  Distributed Computation of Persistent Homology , 2014, ALENEX.

[17]  Dmitry N. Kozlov,et al.  Discrete Morse Theory for free chain complexes , 2005, ArXiv.

[18]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[19]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[20]  Dmitriy Morozov,et al.  Towards Lockfree Persistent Homology , 2020, SPAA.

[21]  Olaf Delgado-Friedrichs,et al.  Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  R. Forman Morse Theory for Cell Complexes , 1998 .

[23]  Gregory Henselman-Petrusek Matroids and Canonical Forms: Theory and Applications , 2017, 1710.06084.

[24]  Primoz Skraba,et al.  Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.

[25]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[26]  Dmitriy Morozov,et al.  Persistent Cohomology and Circular Coordinates , 2011, Discret. Comput. Geom..

[27]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[28]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[29]  L. Vietoris Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen , 1927 .

[30]  J. Hausmann On the Vietoris-Rips complexes and a Cohomology Theory for metric spaces , 1996 .

[31]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[32]  Volkmar Welker,et al.  Minimal Resolutions Via Algebraic Discrete Morse Theory , 2009 .

[33]  The Structure of Morphisms in Persistent Homology, I. Functorial Dualities , 2020, ArXiv.

[34]  W. Deming,et al.  Persistent Homology ? , 2013 .

[35]  Hao Wang,et al.  GPU-Accelerated Computation of Vietoris-Rips Persistence Barcodes , 2020, Symposium on Computational Geometry.

[36]  Sheehan Olver,et al.  A Practical Framework for Infinite-Dimensional Linear Algebra , 2014, 2014 First Workshop for High Performance Technical Computing in Dynamic Languages.

[37]  Hao Wang,et al.  HYPHA: a framework based on separation of parallelisms to accelerate persistent homology matrix reduction , 2019, ICS.

[38]  Matija Čufar,et al.  Ripserer.jl: flexible and efficient persistent homology computation in Julia , 2020, J. Open Source Softw..

[39]  Ulrich Bauer,et al.  Phat - Persistent Homology Algorithms Toolbox , 2014, J. Symb. Comput..

[40]  R. Ghrist,et al.  Matroid Filtrations and Computational Persistent Homology , 2016, 1606.00199.

[41]  Mikael Vejdemo-Johansson,et al.  javaPlex: A Research Software Package for Persistent (Co)Homology , 2014, ICMS.

[42]  Jared Tanner,et al.  Parallel multi-scale reduction of persistent homology filtrations , 2017 .

[43]  A. O. Houcine On hyperbolic groups , 2006 .

[44]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .