Pattern Recognition: Evolution, Mining and Big Data

[1]  King-Sun Fu,et al.  On stochastic automata and languages , 1969, Inf. Sci..

[2]  George S. Sebestyen,et al.  Decision-making processes in pattern recognition , 1962 .

[3]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory, Third Edition , 1989, Springer Series in Information Sciences.

[4]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[5]  Janet L. Kolodner,et al.  Case-Based Reasoning , 1989, IJCAI 1989.

[6]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[7]  Sankar K. Pal,et al.  FGSN: Fuzzy Granular Social Networks - Model and applications , 2015, Inf. Sci..

[8]  C. A. Murthy,et al.  Unsupervised Feature Selection Using Feature Similarity , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Sankar K. Pal,et al.  Granular Mining and Rough-Fuzzy Pattern Recognition: A Way to Natural Computation , 2012, IEEE Intell. Informatics Bull..

[10]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[11]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[12]  Lotfi A. Zadeh,et al.  A Note on Z-numbers , 2011, Inf. Sci..

[13]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[14]  Hans-Jürgen Zimmermann,et al.  Fuzzy sets in pattern recognition , 1987 .

[15]  J. Friedman Regularized Discriminant Analysis , 1989 .

[16]  Peter R. J. Asveld,et al.  Fuzzy context-free languages - Part 2: Recognition and parsing algorithms , 2000, Theor. Comput. Sci..

[17]  Peter R. J. Asveld,et al.  Fuzzy context-free languages - Part 1: Generalized fuzzy context-free grammars , 2000, Theor. Comput. Sci..

[18]  Sankar K. Pal,et al.  Pattern Recognition Algorithms for Data Mining , 2004 .

[19]  Qinghua Hu,et al.  Neighborhood rough set based heterogeneous feature subset selection , 2008, Inf. Sci..

[20]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[21]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[22]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[23]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[24]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[25]  Sankar K. Pal,et al.  Z*-numbers: Augmented Z-numbers for machine-subjectivity representation , 2015, Inf. Sci..

[26]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[27]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[28]  Qiang Shen,et al.  Fuzzy-Rough Sets Assisted Attribute Selection , 2007, IEEE Transactions on Fuzzy Systems.

[29]  Yoh-Han Pao,et al.  Adaptive pattern recognition and neural networks , 1989 .

[30]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[31]  Witold Pedrycz,et al.  Granular Computing: Perspectives and Challenges , 2013, IEEE Transactions on Cybernetics.

[32]  Sankar K. Pal,et al.  Generalized Rough Sets, Entropy, and Image Ambiguity Measures , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[33]  Soumitra Dutta,et al.  Class-dependent rough-fuzzy granular space, dispersion index and classification , 2012, Pattern Recognit..

[34]  Sankar K. Pal,et al.  Rough-Fuzzy MLP: Modular Evolution, Rule Generation, and Evaluation , 2003, IEEE Trans. Knowl. Data Eng..

[35]  Sanghamitra Bandyopadhyay,et al.  Genetic algorithms for generation of class boundaries , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[36]  Theodosios Pavlidis,et al.  Fuzzy Decision Tree Algorithms , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[37]  Amita Pal,et al.  Generalized quadratic discriminant analysis , 2015, Pattern Recognit..

[38]  H. Zou,et al.  A direct approach to sparse discriminant analysis in ultra-high dimensions , 2012 .

[39]  Yali Amit,et al.  Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.

[40]  Tiejun Tong,et al.  Shrinkage‐based Diagonal Discriminant Analysis and Its Applications in High‐Dimensional Data , 2009, Biometrics.

[41]  E. Backer,et al.  Cluster analysis by optimal decomposition of induced fuzzy sets , 1978 .

[42]  James G. Shanahan Soft computing for knowledge discovery introducing Cartesian granule features , 2000, The Kluwer international series in engineering and computer science.

[43]  Martin Hilbert,et al.  The World’s Technological Capacity to Store, Communicate, and Compute Information , 2011, Science.

[44]  Jin Young Choi,et al.  Linear boundary discriminant analysis , 2010, Pattern Recognit..

[45]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[47]  A. Kandel Fuzzy Mathematical Techniques With Applications , 1986 .

[48]  Sankar K. Pal,et al.  Title Paper: Natural computing: A problem solving paradigm with granular information processing , 2013, Appl. Soft Comput..

[49]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[50]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[51]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[52]  Sankar K. Pal,et al.  Granulation, rough entropy and spatiotemporal moving object detection , 2013, Appl. Soft Comput..

[53]  Lotfi A. Zadeh,et al.  Precisiated Natural Language (PNL) , 2004, AI Mag..

[54]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[55]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[56]  Witold Pedrycz,et al.  Granular Computing: Analysis and Design of Intelligent Systems , 2013 .

[57]  Yiannis Kompatsiaris,et al.  Mixture Subclass Discriminant Analysis Link to Restricted Gaussian Model and Other Generalizations , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[58]  Wojciech Ziarko,et al.  Probabilistic approach to rough sets , 2008, Int. J. Approx. Reason..

[59]  Yiannis Kompatsiaris,et al.  Mixture Subclass Discriminant Analysis , 2011, IEEE Signal Processing Letters.

[60]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[61]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[62]  C. R. Rao,et al.  The Utilization of Multiple Measurements in Problems of Biological Classification , 1948 .

[63]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[64]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[65]  King-Sun Fu,et al.  Syntactic Pattern Recognition And Applications , 1968 .

[66]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[67]  Sankar K. Pal,et al.  RNA Secondary Structure Prediction Using Soft Computing , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[68]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[69]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[70]  Sankar K. Pal,et al.  Rough Fuzzy Image Analysis: Foundations and Methodologies , 2010 .

[71]  Robert J. Schalkoff,et al.  Pattern recognition - statistical, structural and neural approaches , 1991 .

[72]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[73]  Sankar K. Pal,et al.  On Z-numbers and the Machine-Mind for Natural Language Comprehension , 2015, Fifty Years of Fuzzy Logic and its Applications.

[74]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[75]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[76]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  Sankar K. Pal,et al.  Data mining in soft computing framework: a survey , 2002, IEEE Trans. Neural Networks.

[78]  Cezary Z. Janikow,et al.  Fuzzy decision trees: issues and methods , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[79]  Andrzej Skowron,et al.  Rough-Fuzzy Hybridization: A New Trend in Decision Making , 1999 .

[80]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[81]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[82]  Yiyu Yao,et al.  MGRS: A multi-granulation rough set , 2010, Inf. Sci..

[83]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[84]  Trevor J. Hastie,et al.  Sparse Discriminant Analysis , 2011, Technometrics.

[85]  Sankar K. Pal,et al.  Neuro-Fuzzy Pattern Recognition: Methods in Soft Computing , 1999 .

[86]  Sankar K. Pal,et al.  Rough Set Based Generalized Fuzzy $C$ -Means Algorithm and Quantitative Indices , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[87]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[88]  S. Pal,et al.  Foundations of Soft Case-Based Reasoning: Pal/Soft Case-Based Reasoning , 2004 .

[89]  Sankar K. Pal,et al.  Fuzzy rough sets, and a granular neural network for unsupervised feature selection , 2013, Neural Networks.

[90]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[91]  Sankar K. Pal,et al.  Linguistic recognition system based on approximate reasoning , 1992, Inf. Sci..

[92]  Sankar K. Pal,et al.  Feature Selection Using f-Information Measures in Fuzzy Approximation Spaces , 2010, IEEE Transactions on Knowledge and Data Engineering.

[93]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .