Role of Sodium-Ion Dynamics and Characteristic Length Scales in Ion Conductivity in Aluminophosphate Glasses Containing Na2SO4

[1]  J. Mukhopadhyay,et al.  Understanding the sodium-ion dynamics in NASICON (Na3Al2P3O12) glass containing NaF: Scaling of electrical conductivity spectra , 2021 .

[2]  N. Krishnan,et al.  Ionic Conductivity of Na3Al2P3O12 Glass Electrolytes-Role of Charge Compensators. , 2021, Inorganic chemistry.

[3]  G. Stan,et al.  Effect of Vanadium Oxide on the Structure and Li-Ion Conductivity of Lithium Silicate Glasses , 2021, The Journal of Physical Chemistry C.

[4]  A. Moguš‐Milanković,et al.  Sodium Ion Conductivity in Mixed Former Na2O–P2O5–GeO2 and Na2O–B2O3–P2O5–GeO2 Glasses , 2021 .

[5]  Zhen Zhou,et al.  NASICON‐Type Na 3 Zr 2 Si 2 PO 12 Solid‐State Electrolytes for Sodium Batteries** , 2021 .

[6]  Zhe Hu,et al.  A Review of Modification Methods of Solid Electrolytes for All‐Solid‐State Sodium‐Ion Batteries , 2020 .

[7]  H. Abo-Mosallam,et al.  Synthesis and characterization of sodium calcium fluorophosphate glasses containing MoO3 for potential use in sealing applications , 2020 .

[8]  Weichao Wang,et al.  Optical properties of Er 3+ and Yb 3+ /Er 3+ ‐doped NaF‐Na 2 SO 4 ‐Al(PO 3 ) 3 fluoro‐sulfo‐phosphate glasses , 2020 .

[9]  L. Wondraczek,et al.  Optimization of electrical conductivity in the Na 2 O‐P 2 O 5 ‐AlF 3 ‐SO 3 glass system , 2020 .

[10]  K. Biswas,et al.  Elucidating the effect of CaF2 on structure, biocompatibility and antibacterial properties of S53P4 glass , 2020 .

[11]  A. Ellis,et al.  IR Spectroscopy of the Cesium Iodide-Water Complex. , 2020, The journal of physical chemistry. A.

[12]  Aniket A. Jagtap,et al.  Influence of NaF on the ionic conductivity of sodium aluminophosphate glass electrolytes , 2020 .

[13]  Adelaide M. Nolan,et al.  Classical and Emerging Characterization Techniques for Investigation of Ion Transport Mechanisms in Crystalline Fast Ionic Conductors. , 2020, Chemical reviews.

[14]  Lili Hu,et al.  Fast Ionic Conducting Glasses in the System 20LiCl–40Li2O–(80–x)PO5/2–xMoO3: The Structural Dependence of Ion Conductivity Studied by Solid-State Nuclear Magnetic Resonance Spectroscopy , 2020 .

[15]  E. Barney,et al.  Neutron Diffraction and Raman Studies of the Incorporation of Sulfate in Silicate Glasses , 2020, The journal of physical chemistry. C, Nanomaterials and interfaces.

[16]  Jincheng Du,et al.  Ionic self-diffusion of Na2O–Al2O3–SiO2 glasses from molecular dynamics simulations , 2020 .

[17]  G. C. Mather,et al.  Elucidating the formation of Al-NBO bonds, Al-O-Al linkages and clusters in alkaline-earth aluminosilicate glasses based on molecular dynamics simulations. , 2019, Physical chemistry chemical physics : PCCP.

[18]  H. Ouada,et al.  Effect of Na2SO4 substitution for Na2O on the structural and electrical properties of a sodium borophosphate glass , 2019, Journal of Alloys and Compounds.

[19]  Steve W. Martin,et al.  New Interpretation of Na+-Ion Conduction in and the Structures and Properties of Sodium Borosilicate Mixed Glass Former Glasses , 2019, The Journal of Physical Chemistry C.

[20]  H. Ebendorff‐Heidepriem,et al.  Decoupling mobility and charge carrier concentration in AgR-AgPO3 glasses (R = Cl, Br, I) , 2018, Solid State Ionics.

[21]  D. Ehrt,et al.  Structural Studies of NaPO3–AlF3 Glasses by High-Resolution Double-Resonance Nuclear Magnetic Resonance Spectroscopy , 2018, The Journal of Physical Chemistry C.

[22]  Li Lu,et al.  Review on solid electrolytes for all-solid-state lithium-ion batteries , 2018, Journal of Power Sources.

[23]  K. Biswas,et al.  Structural elucidation of NASICON (Na3Al2P3O12) based glass electrolyte materials: effective influence of boron and gallium , 2018, RSC advances.

[24]  Steve W. Martin,et al.  A new model linking elastic properties and ionic conductivity of mixed network former glasses. , 2018, Physical chemistry chemical physics : PCCP.

[25]  E. Kamitsos,et al.  Formation, structure and properties of fluoro-sulfo-phosphate poly-anionic glasses , 2017 .

[26]  P. Lesne,et al.  A Raman calibration for the quantification of SO42− groups dissolved in silicate glasses: Application to natural melt inclusions , 2017 .

[27]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[28]  L. Denoroy,et al.  Why Optogenetics Needs in Vivo Neurochemistry. , 2015, ACS chemical neuroscience.

[29]  E. Kamitsos,et al.  Structure and properties of alkali and silver sulfophosphate glasses , 2015 .

[30]  Xiaobo Min,et al.  Raman and FTIR spectra of modified iron phosphate glasses containing arsenic , 2015 .

[31]  A. Welsch,et al.  Lithium conductivity in glasses of the Li2O-Al2O3-SiO2 system. , 2015, Physical chemistry chemical physics : PCCP.

[32]  Steve W. Martin,et al.  Ionic conductivity of mixed glass former 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P(2)O(5)] glasses. , 2013, The journal of physical chemistry. B.

[33]  B. Scaillet,et al.  Effect of sulphur on the structure of silicate melts under oxidizing conditions , 2013 .

[34]  A. Ghosh,et al.  Correlation of ion dynamics with characteristic length scales and network structural units in bismuth borate glasses. , 2013, The Journal of chemical physics.

[35]  John C. Mauro,et al.  Sodium diffusion in boroaluminosilicate glasses , 2011 .

[36]  H. Eckert,et al.  Mixed-Alkali Effects in Aluminophosphate Glasses: A Re-examination of the System [xNa2O(1 – x)Li2O]0.46[yAl2O3(1 – y)P2O5]0.54 , 2011 .

[37]  S. Kilcoyne,et al.  Effects of modifier additions on the thermal properties, chemical durability, oxidation state and structure of iron phosphate glasses , 2009 .

[38]  D. Sidebottom Understanding Ion Motion in Disordered Solids from Impedance Spectroscopy Scaling , 2009 .

[39]  Rashmi R. Deshpande,et al.  Structure−Property Relations in Mixed-Network Glasses: Multinuclear Solid State NMR Investigations of the System xAl2O3:(30 − x)P2O5:70SiO2 , 2009 .

[40]  Jyrki Miettinen,et al.  Thermodynamic–kinetic model for the simulation of solidification in binary copper alloys and calculation of thermophysical properties , 2006 .

[41]  H. Eckert,et al.  Short- and medium-range order in sodium aluminophosphate glasses: new insights from high-resolution dipolar solid-state NMR spectroscopy. , 2006, The journal of physical chemistry. B.

[42]  M. Walter,et al.  Sulfur speciation and network structural changes in sodium silicate glasses: Constraints from NMR and Raman spectroscopy , 2004 .

[43]  Surajit Ghosh,et al.  Electrical conductivity and conductivity relaxation in mixed alkali fluoride glasses , 2002 .

[44]  I. Pegg,et al.  Raman studies of sulfur in borosilicate waste glasses: sulfate environments , 2001 .

[45]  B. Roling,et al.  Ion transport in glass: Influence of glassy structure on spatial extent of nonrandom ion hopping , 2001 .

[46]  W. Mozgawa,et al.  The AIPO4 polymorphs structure in the light of Raman and IR spectroscopy studies , 2000 .

[47]  J. Delaye,et al.  Influence of glass chemical composition on the Na–O bond distance: a 23Na 3Q-MAS NMR and molecular dynamics study , 2000 .

[48]  Pan,et al.  Scaling of the conductivity spectra in ionic glasses: dependence on the structure , 2000, Physical review letters.

[49]  M. Ganguli Lithium ion transport in Li2SO4–Li2O–P2O5 glasses , 1999 .

[50]  David L. Sidebottom,et al.  Dimensionality Dependence of the Conductivity Dispersion in Ionic Materials , 1999 .

[51]  J. Stebbins,et al.  Dynamics of Na in sodium aluminosilicate glasses and liquids , 1996 .

[52]  A. Pines,et al.  Triple-Quantum Two-Dimensional 27Al Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopic Study of Aluminosilicate and Aluminate Crystals and Glasses , 1996 .

[53]  L. Frydman,et al.  Isotropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR , 1995 .

[54]  A. Dent,et al.  Sodium and silver environments and ion-exchange processes in silicate and aluminosilicate glasses , 1993 .

[55]  R. Kirkpatrick,et al.  Nature of Alumina in Phosphate Glass: II, Structure of Sodium Alurninophosphate Glass , 1993 .

[56]  K. Funke,et al.  Jump relaxation in solid electrolytes , 1993 .

[57]  Petersen,et al.  Non-Debye relaxation in structurally disordered ionic conductors: Effect of Coulomb interaction. , 1991, Physical review letters.

[58]  C. Xiangsheng,et al.  Raman spectrum studies of the glasses in the system Na2OAl2O3P2O5 , 1986 .

[59]  S. Summerfield Universal low-frequency behaviour in the a.c. hopping conductivity of disordered systems , 1985 .

[60]  G. N. Greaves,et al.  EXAFS and the structure of glass , 1985 .

[61]  G. Exarhos,et al.  Vibrational spectroscopy of cation‐site interactions in phosphate glasses , 1979 .

[62]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.