Dual-Regression Retrieval Algorithm for Real-Time Processing of Satellite Ultraspectral Radiances

AbstractA fast physically based dual-regression (DR) method is developed to produce, in real time, accurate profile and surface- and cloud-property retrievals from satellite ultraspectral radiances observed for both clear- and cloudy-sky conditions. The DR relies on using empirical orthogonal function (EOF) regression “clear trained” and “cloud trained” retrievals of surface skin temperature, surface-emissivity EOF coefficients, carbon dioxide concentration, cloud-top altitude, effective cloud optical depth, and atmospheric temperature, moisture, and ozone profiles above the cloud and below thin or broken cloud. The cloud-trained retrieval is obtained using cloud-height-classified statistical datasets. The result is a retrieval with an accuracy that is much higher than that associated with the retrieval produced by the unclassified regression method currently used in the International Moderate Resolution Imaging Spectroradiometer/Atmospheric Infrared Sounder (MODIS/AIRS) Processing Package (IMAPP) retriev...

[1]  Harold E. Brooks,et al.  A 5-yr Climatology of Tornado False Alarms , 2011 .

[2]  Moustafa T. Chahine,et al.  Improving Global Analysis and Forecasting with AIRS , 2006 .

[3]  William L. Smith,et al.  Atmospheric soundings from satellites—false expectation or the key to improved weather prediction? , 1991 .

[4]  W. Paul Menzel,et al.  Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity , 2005 .

[5]  Larrabee L. Strow,et al.  An overview of the AIRS radiative transfer model , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  William L. Smith,et al.  Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels , 2009 .

[7]  Steven Platnick,et al.  Retrieval of semitransparent ice cloud optical thickness from atmospheric infrared sounder (AIRS) measurements , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[8]  D. Barber,et al.  Detecting cloud vertical structures from radiosondes and MODIS over Arctic first-year sea ice , 2007 .

[9]  William L. Smith,et al.  Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2 , 2003 .

[10]  Xu Liu,et al.  Thermodynamic and cloud parameter retrieval using infrared spectral data , 2005 .

[11]  Eva Borbas,et al.  International MODIS and AIRS processing package: AIRS products and applications , 2007 .

[12]  William L. Smith,et al.  The Use of Eigenvectors of Statistical Covariance Matrices for Interpreting Satellite Sounding Radiometer Observations , 1976 .

[13]  Bryan A. Baum,et al.  Single scattering properties of droxtals , 2003 .

[14]  Stanley G. Benjamin,et al.  CONVECTIVE-SCALE WARN-ON-FORECAST SYSTEM: A vision for 2020 , 2009 .

[15]  Bryan A. Baum,et al.  Radiative Properties of Cirrus Clouds in the Infrared (8-13 Microns) Spectral Region , 2013 .

[16]  William J. Blackwell,et al.  A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Robert O. Knuteson,et al.  An Improvement to the High-Spectral-Resolution CO2-Slicing Cloud-Top Altitude Retrieval , 2006 .

[18]  Jun Li,et al.  Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements , 2009 .

[19]  Hung-Lung Huang,et al.  Cloudy sounding and cloud-top height retrieval from AIRS alone single 1 field-of-view radiance measurements 2 3 , 2007 .

[20]  Steven A. Ackerman,et al.  High-Spectral- and High-Temporal-Resolution Infrared Measurements from Geostationary Orbit , 2009 .

[21]  William L. Smith,et al.  AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. , 2006 .

[22]  William L. Smith,et al.  The NPOESS Airborne Sounding Testbed Interferometer—Remotely Sensed Surface and Atmospheric Conditions during CLAMS , 2005 .

[23]  X. Wu,et al.  Emissivity of rough sea surface for 8-13 num: modeling and verification. , 1997, Applied optics.

[24]  William L. Smith,et al.  Technical Note: Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere , 2009 .

[25]  David M. Winker,et al.  The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.

[26]  Hyun Sook Yi,et al.  Severe-Weather Phobia , 2006 .

[27]  Jun A. Zhang,et al.  Evaluation of Planetary Boundary Layer Parameterizations in Tropical Cyclones by Comparison of In Situ Observations and High-Resolution Simulations of Hurricane Isabel (2003). Part I: Initialization, Maximum Winds, and the Outer-Core Boundary Layer , 2009 .

[28]  Jianping Huang,et al.  Relationships between radiosonde and RUC‐2 meteorological conditions and cloud occurrence determined from ARM data , 2005 .

[29]  Eva Borbas,et al.  Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements , 2008 .

[30]  Christopher D. Barnet,et al.  Hyperspectral Earth Observation from IASI: Five Years of Accomplishments , 2012 .

[31]  Joel Susskind,et al.  Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm , 2011, IEEE Transactions on Geoscience and Remote Sensing.