A quasi-stability result for dictatorships in Sn

We prove that Boolean functions on Sn whose Fourier transform is highly concentrated on the first two irreducible representations of Sn, are close to being unions of cosets of point-stabilizers. We use this to give a natural proof of a stability result on intersecting families of permutations, originally conjectured by Cameron and Ku [6], and first proved in [10]. We also use it to prove a ‘quasi-stability’ result for an edge-isoperimetric inequality in the transposition graph on Sn, namely that subsets of Sn with small edge-boundary in the transposition graph are close to being unions of cosets of point-stabilizers.

[1]  S. Safra,et al.  Noise-Resistant Boolean-Functions are Juntas , 2003 .

[2]  David Ellis,et al.  A stability result for balanced dictatorships in Sn , 2012, Random Struct. Algorithms.

[3]  Christian Bey,et al.  An intersection theorem for systems of finite sets , 2017, Discret. Appl. Math..

[4]  B. Larose Stable sets of maximal siz ei n Kneser-type graphs , 2004 .

[5]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[6]  John H. Lindsey,et al.  Assignment of Numbers to Vertices , 1964 .

[7]  J. Gross,et al.  Graph Theory and Its Applications , 1998 .

[8]  Jun Wang,et al.  An Erdös-Ko-Rado-type theorem in Coxeter groups , 2008, Eur. J. Comb..

[9]  David Ellis,et al.  Stability for t-intersecting families of permutations , 2008, J. Comb. Theory, Ser. A.

[10]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[11]  Gil Kalai,et al.  A Fourier-theoretic perspective on the Condorcet paradox and Arrow's theorem , 2002, Adv. Appl. Math..

[12]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[13]  L. H. Harper Optimal Assignments of Numbers to Vertices , 1964 .

[14]  Assaf Naor,et al.  Boolean functions whose Fourier transform is concentrated on the first two levels , 2002, Adv. Appl. Math..

[15]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[16]  Peter Frankl,et al.  On the Maximum Number of Permutations with Given Maximal or Minimal Distance , 1977, J. Comb. Theory, Ser. A.

[17]  Cheng Yeaw Ku,et al.  Intersecting families of permutations , 2003, Eur. J. Comb..

[18]  Sergiu Hart,et al.  A note on the edges of the n-cube , 1976, Discret. Math..

[19]  Chris D. Godsil,et al.  A new proof of the Erdös-Ko-Rado theorem for intersecting families of permutations , 2007, Eur. J. Comb..

[20]  A. J. Bernstein,et al.  Maximally Connected Arrays on the n-Cube , 1967 .

[21]  Yuval Filmus,et al.  Triangle-intersecting Families of Graphs , 2010 .

[22]  Ryan O'Donnell,et al.  Gaussian noise sensitivity and Fourier tails , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[23]  Hamed Hatami,et al.  Fourier analysis and large independent sets in powers of complete graphs , 2008, J. Comb. Theory, Ser. B.

[24]  Ehud Friedgut,et al.  Boolean Functions With Low Average Sensitivity Depend On Few Coordinates , 1998, Comb..

[25]  David Ellis,et al.  A proof of the Cameron–Ku conjecture , 2008, J. Lond. Math. Soc..

[26]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[27]  J. Bourgain On the distribution of the fourier spectrum of Boolean functions , 2002 .

[28]  A. J. W. Hilton,et al.  SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1967 .

[29]  Paul Renteln,et al.  On the Spectrum of the Derangement Graph , 2007, Electron. J. Comb..

[30]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[31]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[32]  N. Alon,et al.  Graph Products, Fourier Analysis and Spectral Techniques , 2004 .

[33]  E. Friedgut,et al.  LOW-DEGREE BOOLEAN FUNCTIONS ON $S_{n}$ , WITH AN APPLICATION TO ISOPERIMETRY , 2015, Forum of Mathematics, Sigma.