Temperature scaling of ferroelectric hysteresis in hard lead zirconate titanate bulk ceramic

[1]  A. Ngamjarurojana,et al.  Dynamic hysteresis and scaling behavior of hard lead zirconate titanate bulk ceramics , 2007 .

[2]  Athipong Ngamjarurojana,et al.  Temperature scaling of dynamic hysteresis in soft lead zirconate titanate bulk ceramic , 2007 .

[3]  R. Yimnirun,et al.  Scaling behavior of dynamic hysteresis in soft lead zirconate titanate bulk ceramics , 2006 .

[4]  O. P. Thakur,et al.  Study of pinched loop characteristics of lead zirconate titanate (65∕35) , 2006 .

[5]  K. Bowman,et al.  Thermal effects on domain orientation of tetragonal piezoelectrics studied by in situ x-ray diffraction , 2006 .

[6]  W. Cao,et al.  Pinning and depinning mechanism of defect dipoles in PMnN–PZT ceramics , 2005 .

[7]  D. Viehland,et al.  Influence of Thermal and Electrical Histories on Domain Structure and Polarization Switching in Potassium‐Modified Lead Zirconate Titanate Ceramics , 2005 .

[8]  N. Setter,et al.  The nonlinearity and subswitching hysteresis in hard and soft PZT , 2005 .

[9]  S. Wada,et al.  Domain Contribution to Direct and Converse Piezoelectric Effects of PZT Ceramics , 2004 .

[10]  Zhi-guo Liu,et al.  Low-temperature switching fatigue behavior of ferroelectric SrBi2Ta2O9 thin films , 2004 .

[11]  J. Rino,et al.  90° domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process , 2003, cond-mat/0311162.

[12]  L. Lim,et al.  Frequency response and scaling of hysteresis for ferroelectric Pr(Zr0.52Ti0.48)O3 thin films deposited by laser ablation , 1999 .

[13]  D. Viehland,et al.  Role of lower valent substituent-oxygen vacancy complexes in polarization pinning in potassium-modified lead zirconate titanate , 1999 .

[14]  Kenji Uchino,et al.  Piezoelectric Actuators and Ultrasonic Motors , 1996 .

[15]  Leslie E. Cross,et al.  Direct evaluation of domain‐wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate‐titanate ceramics , 1994 .

[16]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[17]  K. H. Hardtl,et al.  Electrical after-effects in Pb(Ti, Zr)O3 ceramics , 1977 .

[18]  Bernard Jaffe,et al.  CHAPTER 12 – APPLICATIONS OF PIEZOELECTRIC CERAMICS , 1971 .