Inorganic and hybrid nanostructures for optical limiting

This paper reviews the recent development of inorganic and hybrid nanomaterials for optical limiting applications. The synthesis, testing method, optical limiting property and mechanism of several representative classes of nanomaterial, including carbon nanotubes, silver and gold nanocomposites, and selected other conducting and semiconducting nanomaterials, are introduced separately. The nonlinear optical mechanisms observed in inorganic nanomaterials, i.e. nonlinear scattering, two-photon absorption, free-carrier absorption, etc, are discussed in conjunction with the influence of the material properties and the laser source on the optical limiting performance.

[1]  Minoru Obara,et al.  Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser , 1999 .

[2]  François Hache,et al.  Carbon nanotubes for optical limiting , 2002 .

[3]  N. G. Mironova,et al.  Theoretical investigation of nonlinear limiting of laser radiation power by suspensions of carbon particles , 2003 .

[4]  Daoben Zhu,et al.  Nonlinear optical properties in three novel nanocomposites with gold nanoparticles , 2001 .

[5]  D. Banerjee,et al.  Complex formation by bismuth and boron with fullerene (C_60): A reaction that opens up a novel route for synthesis of C_60-inorganic hybrid composites , 2005 .

[6]  Werner J. Blau,et al.  Third-order optical non-linearity in Zn(II) complexes of 5,10,15,20-tetraarylethynyl-substituted porphyrins , 1997 .

[7]  Francis D'Souza,et al.  Donor−Acceptor Nanohybrids of Zinc Naphthalocyanine or Zinc Porphyrin Noncovalently Linked to Single-Wall Carbon Nanotubes for Photoinduced Electron Transfer , 2007 .

[8]  Wenfang Sun,et al.  Optical limiting of a covalently bonded gold nanoparticle/polylysine hybrid material. , 2005, The journal of physical chemistry. B.

[9]  S. Barcikowski,et al.  Improving Laser Ablation of Zirconia by Liquid Films: Multiple Influence of Liquids on Surface Machining and Nanoparticle Generation , 2009 .

[10]  Wenfang Sun,et al.  Optical limiting of semiconductor nanoparticles for nanosecond laser pulses , 2004 .

[11]  Hongan Ye,et al.  Size effect of optical limiting in gold nanoparticles , 2007 .

[12]  Jason E. Riggs,et al.  Strong Optical Limiting of Silver-Containing Nanocrystalline Particles in Stable Suspensions , 1999 .

[13]  Jörg Schwedes,et al.  Production of sub-micron particles by wet comminution in stirred media mills , 2004 .

[14]  Werner J. Blau,et al.  Nonlinear Optical Properties of Porphyrins , 2007 .

[15]  Andrew T. S. Wee,et al.  Gold and silver coated carbon nanotubes: An improved broad-band optical limiter , 2005 .

[16]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[17]  T. Goodson,et al.  Nonlinear Absorption Properties in Novel Gold Nanostructured Topologies , 2003 .

[18]  Helmut Münstedt,et al.  The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites , 2008 .

[19]  Anders Eriksson,et al.  Synthesis and nonlinear light scattering of microemulsions and nanoparticle suspensions , 2007 .

[20]  M. Bystrzejewski,et al.  Quasi one‐dimensional ceramic nanostructures spontaneously formed by combustion synthesis , 2006 .

[21]  Ying Lin,et al.  Carbon nanotube-based functional materials for optical limiting. , 2007, Journal of nanoscience and nanotechnology.

[22]  Jacques A. Delaire,et al.  Optical Limitation induced by Gold Clusters. 1. Size Effect , 2000 .

[23]  D. Carroll,et al.  Enhanced Nonlinear Transmittance by Complementary Nonlinear Mechanisms: A Reverse‐Saturable Absorbing Dye Blended with Nonlinear‐Scattering Carbon Nanotubes , 2005 .

[24]  T. Radhakrishnan,et al.  Optical power limiting in the femtosecond regime by silver nanoparticle–embedded polymer film , 2007 .

[25]  Xueru Zhang,et al.  Enhanced optical limiting properties in suspensions of CdO nanowires , 2007 .

[26]  Werner J. Blau,et al.  Nonlinear optical response of multiwalled carbon-nanotube dispersions , 2003 .

[27]  K. Loh,et al.  Templated deposition of MoS2 nanotubules using single source precursor and studies of their optical limiting properties. , 2006, The journal of physical chemistry. B.

[28]  W. Blau,et al.  A survey on the functionalization of single-walled nanotubes. The chemical attachment of phthalocyanine moieties , 2003 .

[29]  Shiliang Qu,et al.  Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands , 2002 .

[30]  Pankaj Pathak,et al.  Optical limiting of silver-containing nanoparticles , 2007 .

[31]  D. N. Rao,et al.  Nonlinear absorption and scattering properties of cadmium sulphide nanocrystals with its application as a potential optical limiter , 2006 .

[32]  D. Guldi,et al.  Single-wall carbon nanotubes bearing covalently linked phthalocyanines--photoinduced electron transfer. , 2007, Journal of the American Chemical Society.

[33]  Shiliang Qu,et al.  A theoretical and experimental study on optical limiting in platinum nanoparticles , 2002 .

[34]  Zhi‐Xin Guo,et al.  Novel [60]fullerene–silver nanocomposite with large optical limiting effect , 2001 .

[35]  N Funduk,et al.  The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. , 1999, Dental materials : official publication of the Academy of Dental Materials.

[36]  G. Lu,et al.  Picosecond nonlinear optical responses of Au/PVP composite films , 2006 .

[37]  B. Chichkov,et al.  Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers , 2008 .

[38]  T. F. Boggess,et al.  A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials , 1993 .

[39]  Li Qing-Feng,et al.  Isospin effect on nuclear stopping in intermediate energy heavy ion collisions , 2002 .

[40]  James J. Doyle,et al.  Nonlinear optical response of Mo6S4.5I4.5 nanowires , 2007 .

[41]  Holger Lubatschowski,et al.  Femtosecond Technology for Technical and Medical Applications , 2010 .

[42]  Daoben Zhu,et al.  Fullerene-functionalized gold core–shell nanoparticles: preparation and optical limiting properties , 2004 .

[43]  G. Yang Laser ablation in liquids : Applications in the synthesis of nanocrystals , 2007 .

[44]  Yoshihiro Takeda,et al.  Formation of Stable Platinum Nanoparticles by Laser Ablation in Water , 2003 .

[45]  Reji Philip,et al.  Freely Dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 Core−Shell Nanoparticles: One-Step Synthesis, Characterization, Spectroscopy, and Optical Limiting Properties , 2003 .

[46]  B. Sreedhar,et al.  Palladium Nanowire from Precursor Nanowire: Crystal‐to‐Crystal Transformation via In Situ Reduction by Polymer Matrix , 2007 .

[47]  Wei Ji,et al.  Electronic Structure and Optical Limiting Behavior of Carbon Nanotubes , 1999 .

[48]  David L. Carroll,et al.  A Composite from Poly(m‐phenylenevinylene‐co‐2,5‐dioctoxy‐p‐phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics , 1998 .

[49]  Deqing Zhang,et al.  The excited-state absorption and third-order optical nonlinearity from 1-dodecanethiol protected gold nanoparticles: Application for optical limiting , 2004 .

[50]  Zhi‐Xin Guo,et al.  Hexakisaddu ct C60–Ag nanocomposite: fabrication and optical limiting effect , 2002 .

[51]  C. Sow,et al.  Optical limiting properties of amorphous SixNy and SiC coated carbon nanotubes , 2004 .

[52]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[53]  H. G. Scott,et al.  Phase relationships in the zirconia-yttria system , 1975 .

[54]  J. Qiu,et al.  Optical nonlinearities from transverse plasmon resonance in gold nano-rods , 2004 .

[55]  Nastassja A. Lewinski,et al.  Cytotoxicity of nanoparticles. , 2008, Small.

[56]  Michel Meunier,et al.  Ultrafast laser based “green” synthesis of non-toxic nanoparticles in aqueous solutions , 2008 .

[57]  T. P. Radhakrishnan,et al.  Nanoparticle-Embedded Polymer: In Situ Synthesis, Free-Standing Films with Highly Monodisperse Silver Nanoparticles and Optical Limiting , 2005 .

[58]  R. Kesavamoorthy,et al.  Optical limiting with off-resonant excitations in Ag nanocomposite glasses: A z-scan study , 2007 .

[59]  L Vivien,et al.  Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions. , 2001, Optics letters.

[60]  Werner J. Blau,et al.  PICOSECOND REVERSE SATURABLE ABSORPTION AND OPTICAL LIMITING IN FULLERENES AND THEIR METAL DERIVATIVES , 2000 .

[61]  Jason E. Riggs,et al.  Organic and inorganic optical limiting materials. From fullerenes to nanoparticles , 1999 .

[62]  D. N. Rao,et al.  Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles. , 2005, Optics express.

[63]  Reji Philip,et al.  Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters , 2000 .

[64]  Boris N. Chichkov,et al.  Properties of nanoparticles generated during femtosecond laser machining in air and water , 2007 .

[65]  Oleg B. Danilov,et al.  Nonlinear-optical limiters of laser radiation based on suspensions of carbon and fulleroid nanoparticles , 2004 .

[66]  Werner J. Blau,et al.  Material Investigation and Optical Limiting Properties of Carbon Nanotube and Nanoparticle Dispersions , 2003 .

[67]  Wei Ji,et al.  Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods , 2006 .

[68]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[69]  Yinglin Song,et al.  Large optical limiting of [60]fullerene-substituted terpyridine palladium nanoparticles , 2003 .

[70]  Qihuang Gong,et al.  Nanometer‐Sized Copper Sulfide Hollow Spheres with Strong Optical‐Limiting Properties , 2007 .

[71]  Linear and nonlinear optical behavior of palladium nanoparticle reinforced fluoropolymer composites , 2007 .

[72]  Daoben Zhu,et al.  Self-assembly of the (60)fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles , 2002 .

[73]  T. Kondow,et al.  Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution , 2000 .

[74]  Rashid A. Ganeev,et al.  Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices , 2006 .

[75]  P. Prasad,et al.  Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range. , 2007, Optics express.

[76]  T. Kondow,et al.  Dissociation and Aggregation of Gold Nanoparticles under Laser Irradiation , 2001 .

[77]  Kunihiro Yamada,et al.  Estimation of Surface Oxide on Surfactant-Free Gold Nanoparticles Laser-Ablated in Water , 2007 .

[78]  Lee W. Tutt,et al.  Optical limiting performance of C60 and C70 solutions , 1992, Nature.

[79]  Zhi‐Xin Guo,et al.  The self-assembly of gold nanoparticles with C60 nanospheres: fabrication and optical liming effect , 2003 .

[80]  Andrew T. S. Wee,et al.  Modified carbon nanotubes as broadband optical limiting nanomaterials , 2006 .

[81]  Michael Hanack,et al.  Molecular Engineering of Peripherally And Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics , 2003 .

[82]  Timurbek Usmanov,et al.  Non-linear optical properties of metal nanoparticles implanted in silicate glass , 2003 .

[83]  H. Zeng,et al.  Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. , 2005, The journal of physical chemistry. B.

[84]  Wenfang Sun,et al.  Optical limiting of gold nanoparticle aggregates induced by electrolytes. , 2006, The journal of physical chemistry. B.

[85]  Shiliang Qu,et al.  Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser , 2003 .

[86]  P. Prem Kiran,et al.  Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag–Cu nanoclusters co-doped in SiO2 Sol-Gel films , 2004 .

[87]  O. Nishimura,et al.  Synthesis of silver nanoparticles by laser ablation in pure water , 2004 .

[88]  W. Blau,et al.  Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes , 2008 .

[89]  Yuxiao Wang,et al.  Strong optical limiting property of a novel silver nanoparticle containing C60 derivative , 2003 .

[90]  S. Barcikowski,et al.  Production of Bioactive Nanomaterial Using Laser Generated Nanoparticles , 2009 .

[91]  Ion Cohanoschi,et al.  Viscosity Dependence of Optical Limiting in Carbon Black Suspensions , 2002 .

[92]  Robert B. Martin,et al.  NANOMATERIALS AS OPTICAL LIMITERS , 2000 .

[93]  Stephan Barcikowski,et al.  In Situ Bioconjugation: Single Step Approach to Tailored Nanoparticle‐Bioconjugates by Ultrashort Pulsed Laser Ablation , 2009 .

[94]  Yinglin Song,et al.  Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: A comparative study , 2007 .

[95]  David J. Hagan,et al.  Investigation of an optical limiting mechanism in multiwalled carbon nanotubes , 2000 .

[96]  M. Kawasaki,et al.  1064-nm laser fragmentation of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles , 2006 .

[97]  J. Coleman,et al.  Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. , 2006, The journal of physical chemistry. B.

[98]  Gema de la Torre,et al.  Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. , 2004, Chemical reviews.

[99]  T. Gao,et al.  Two-photon absorption and optical limiting in poly(styrene maleic anhydride)/TiO2 nanocomposites , 2001 .

[100]  Orazio Puglisi,et al.  Nonlinear optical activity in Ag–SiO2 nanocomposite thin films with different silver concentration , 2004 .

[101]  Werner J. Blau,et al.  Scattering induced optical limiting in Si/SiO2 nanostructure dispersions , 2007 .

[102]  F. Henari,et al.  Optical switching in hydrogenated amorphous silicon–sulfur alloy prepared by glow discharge , 2004 .

[103]  R. Ispasoiu,et al.  Large Optical Limiting from Novel Metal-Dendrimer Nanocomposite Materials , 2000 .

[104]  A. K. Sood,et al.  Optical limiting in single-walled carbon nanotube suspensions , 2000 .

[105]  Ququan Wang,et al.  Influences of Titania Concentration on the Structure and the Three-order Nonlinear Optical Properties of Core-shell Ag/TiO2 Nanocomposites , 2006 .

[106]  Guorong Chen,et al.  Preparation and optical properties of silver nanoparticles induced by a femtosecond laser irradiation , 2007 .

[107]  Timurbek Usmanov,et al.  Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals , 2001 .

[108]  James J. Doyle,et al.  Nonlinear optical performance of chemically tailored phthalocyanine–polymer films as solid-state optical limiting devices , 2008 .

[109]  Michel Meunier,et al.  Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water , 2003 .

[110]  N. Hüsing,et al.  Glycol-modified silanes: novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials. , 2007, Accounts of chemical research.

[111]  E. Doris,et al.  Combination of carbon nanotubes and two-photon absorbers for broadband optical limiting , 2004, cond-mat/0501422.

[112]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[113]  F. Henari,et al.  Optical characterization of thermally evaporated thin CdO films , 2003 .

[114]  M. Mostafavi,et al.  Optical limitation induced by gold clusters: Mechanism and efficiency , 2001 .

[115]  François Hache,et al.  Picosecond and nanosecond polychromatic pump–probe studies of bubble growth in carbon-nanotube suspensions , 2002 .

[116]  N Izard,et al.  Influence of structure on the optical limiting properties of nanotubes. , 2005, Optics letters.

[117]  A. Stepanov,et al.  Characterization of nonlinear optical parameters of copper‐ and silver‐doped silica glasses at λ = 1064 nm , 2004 .

[118]  C. Flytzanis,et al.  Characterization of nonlinear scattering in colloidal suspensions of silica particles , 2000 .

[119]  L. Kou,et al.  Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. , 1993, Applied optics.

[120]  A. Rao,et al.  Nonlinear optical scattering and absorption in bismuth nanorod suspensions , 2007 .

[121]  Paras N. Prasad,et al.  ERRATUM: Nonlinear multiphoton processes in organic and polymeric materials , 1996 .

[122]  Hugh J. Byrne,et al.  Reverse saturable absorption in tetraphenylporphyrins , 1985 .

[123]  Werner J. Blau,et al.  Intensity-dependent absorption and resonant optical nonlinearity of C60 and C70 solutions , 1992 .

[124]  T. Pradeep,et al.  AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting , 2005 .

[125]  Reji Philip,et al.  Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain , 2003 .

[126]  Zhendong Hu,et al.  Nanoparticle generation in ultrafast pulsed laser ablation of nickel , 2007 .

[127]  Fuxi Gan,et al.  Optical nonlinear properties of PbS nanoparticles studied by the Z-scan technique , 1998 .

[128]  E. Sacher,et al.  Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media , 2004 .

[129]  W. Ji,et al.  LARGE NONLINEAR ABSORPTION IN COATED AG2S/CDS NANOPARTICLES BY INVERSE MICROEMULSION , 1998 .

[130]  Zhu Cong-Shan,et al.  Properties and Stability of Nanosecond Optical Limiting of Gold Nanoclusters , 2002 .

[131]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[132]  Jun Wang,et al.  Solvent Effect on Optical Limiting Properties of Single-Walled Carbon Nanotube Dispersions , 2008 .

[133]  Yinglin Song,et al.  Solvent-dependent optical limiting behavior of lead nanowires stabilized by [60] fullerene derivative , 2007 .

[134]  Byrne,et al.  Large infrared nonlinear optical response of C60. , 1991, Physical review letters.