Global localisation via sub-graph isomorphism

A novel approach to the global localisation problem for an autonomous mobile robot is presented. Instead of referring to traditional map-based techniques, we choose to extract a graph-like topological representation of the free space from occupancy grids, thus shifting the map-matching problem to a sub-graph isomorphism one. An efficient any-time algorithm is described in detail, and simulated experimental results are provided.

[1]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[2]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[3]  Maurizio Piaggio,et al.  Using roadmaps to classify regions of space for autonomous robot navigation , 1998, Robotics Auton. Syst..

[4]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[5]  Gregory Dudek,et al.  Precise positioning using model-based maps , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[6]  King-Sun Fu,et al.  Subgraph error-correcting isomorphisms for syntactic pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Jon M. Kleinberg,et al.  The localization problem for mobile robots , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[8]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[9]  Michael Drumheller,et al.  Mobile Robot Localization Using Sonar , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Nils J. Nilsson,et al.  A mobius automation: an application of artificial intelligence techniques , 1969, IJCAI 1969.

[11]  Alberto Elfes,et al.  Sonar-based real-world mapping and navigation , 1987, IEEE J. Robotics Autom..

[12]  Javier Gonzalez,et al.  Comparison of two range-based pose estimators for a mobile robot , 1993, Other Conferences.

[13]  Gregory Dudek,et al.  Mapping in unknown graph-like worlds , 1996 .

[14]  Maurizio Piaggio,et al.  Distributing a robotic system on a network: the ETHNOS approach , 1996, Adv. Robotics.

[15]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[16]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[17]  Maja J. Matarić,et al.  A Distributed Model for Mobile Robot Environment-Learning and Navigation , 1990 .