Periodic Event-Triggered Integral Sliding-Mode Control for T-S Fuzzy Systems.

This article investigates the integral sliding-mode control (SMC) problem for T-S fuzzy systems via the periodic event-triggered method. First, in order to remove the assumption that the inter-execution time has a uniform upper bound, a novel sliding variable error function is added into the event-triggering mechanism. Second, in order to avoid the extra information transmission, a new sliding-mode switching function consisting of the triggering state information is proposed to design the event-triggered integral SMC (ISMC) law. In addition, the ultimate boundedness of sliding motion can be ensured via using a designed event-triggered ISMC law. A sufficient condition of boundedness is given in the form of linear matrix inequality, which is employed to solve the controller gain matrix. Finally, the effectiveness of theoretical results can be illustrated via three illustrative examples.