Quantum teleportation between remote atomic-ensemble quantum memories

Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a “quantum channel,” quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895–1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼108 rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing.

[1]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[2]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[3]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[4]  Jacob F. Sherson,et al.  Quantum teleportation between light and matter , 2006, Nature.

[5]  B. He,et al.  Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles , 2010, 1003.2353.

[6]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[7]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[8]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[9]  A. D. Boozer,et al.  Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles , 2003, Nature.

[10]  Y. O. Dudin,et al.  A quantum memory with telecom-wavelength conversion , 2010 .

[11]  Jian-Wei Pan,et al.  Entangled photons and quantum communication , 2010 .

[12]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[13]  H. Prakash Quantum teleportation , 2009, 2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems.

[14]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[15]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[16]  Jian-Wei Pan,et al.  Experimental demonstration of a BDCZ quantum repeater node , 2008, Nature.

[17]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[18]  M. Lukin,et al.  Atomic Memory for Correlated Photon States , 2003, Science.

[19]  Jian-Wei Pan,et al.  Decoy-state quantum key distribution with polarized photons over 200 km. , 2010, Optics express.

[20]  N. Gisin,et al.  High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres , 2009, 0903.3907.

[21]  Jian-Wei Pan,et al.  Greenberger-Horne-Zeilinger-state analyzer , 1998 .

[22]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[23]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[24]  H. Kimble,et al.  Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks , 2007, Science.

[25]  Jörg Schmiedmayer,et al.  Demonstration of a stable atom-photon entanglement source for quantum repeaters. , 2007, Physical review letters.

[26]  Jian-Wei Pan,et al.  Memory-built-in quantum teleportation with photonic and atomic qubits , 2007, 0705.1256.

[27]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[28]  Markus P. Mueller,et al.  Efficient quantum repeater based on deterministic Rydberg gates , 2010, 1003.1911.

[29]  B. Julsgaard,et al.  Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.

[30]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[31]  Jonathan Simon,et al.  Interfacing collective atomic excitations and single photons. , 2007, Physical review letters.

[32]  S. Olmschenk,et al.  Quantum Teleportation Between Distant Matter Qubits , 2009, Science.

[33]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[34]  Bo Zhao,et al.  Efficient and long-lived quantum memory with cold atoms inside a ring cavity , 2012, Nature Physics.

[35]  H. J. Kimble,et al.  Measurement-induced entanglement for excitation stored in remote atomic ensembles , 2005, Nature.

[36]  T. M. Stace,et al.  Scalable quantum computing with atomic ensembles , 2008, 0804.0962.

[37]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[38]  J. Laurat,et al.  Mapping photonic entanglement into and out of a quantum memory , 2007, Nature.

[39]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[40]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[41]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[42]  Jian-Wei Pan,et al.  A millisecond quantum memory for scalable quantum networks , 2008, 0807.5064.