An experimental study: An interpretative division method on principal component analysis

[1]  Shigang Liu,et al.  Overview of principal component analysis algorithm , 2016 .

[2]  Yongduan Song,et al.  Fault Detection Filtering for Nonlinear Switched Stochastic Systems , 2016, IEEE Transactions on Automatic Control.

[3]  Somaye Ahmadkhani,et al.  Face recognition using supervised probabilistic principal component analysis mixture model in dimensionality reduction without loss framework , 2016, IET Comput. Vis..

[4]  Xuefeng Yan,et al.  Related and independent variable fault detection based on KPCA and SVDD , 2016 .

[5]  Nora El-Gohary,et al.  Semantic NLP-Based Information Extraction from Construction Regulatory Documents for Automated Compliance Checking , 2016, J. Comput. Civ. Eng..

[6]  L. Mredhula,et al.  An Effective Filtering Technique for Image Denoising Using Probabilistic Principal Component Analysis (PPCA) , 2016 .

[7]  Alessio Farcomeni,et al.  Probabilistic principal component analysis to identify profiles of physical activity behaviours in the presence of non‐ignorable missing data , 2016 .

[8]  Hu Han,et al.  Research on adaptive control strategy optimization of hybrid electric vehicle , 2016, J. Intell. Fuzzy Syst..

[9]  Simone Scardapane,et al.  Granular Computing Techniques for Classification and Semantic Characterization of Structured Data , 2015, Cognitive Computation.

[10]  Feipeng Da,et al.  A dictionary learning and KPCA-based feature extraction method for off-line handwritten Tibetan character recognition , 2015 .

[11]  Jun Zhou,et al.  Anomaly detection for satellite power subsystem with associated rules based on Kernel Principal Component Analysis , 2015, Microelectron. Reliab..

[12]  Fariborz Mahmoudi,et al.  Clique-based semantic kernel with application to semantic relatedness , 2015, Nat. Lang. Eng..

[13]  Alejandro Jara,et al.  The use of data reduction techniques to assess systemic risk: An application to the Chilean banking system , 2015, Intell. Data Anal..

[14]  Jonathan M. Garibaldi,et al.  Leaf classification using multiple feature analysis based on semi-supervised clustering , 2015, J. Intell. Fuzzy Syst..

[15]  Yongduan Song,et al.  A novel approach to output feedback control of fuzzy stochastic systems , 2014, Autom..

[16]  Lucian L. Visinescu,et al.  Orthogonal rotations in latent semantic analysis: An empirical study , 2014, Decis. Support Syst..

[17]  Thierry Bouwmans,et al.  Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance , 2014, Comput. Vis. Image Underst..

[18]  Age K. Smilde,et al.  Principal Component Analysis , 2003, Encyclopedia of Machine Learning.

[19]  Witold Pedrycz,et al.  A construction of sound semantic linguistic scales using 4-tuple representation of term semantics , 2014, Int. J. Approx. Reason..

[20]  Charles C. David,et al.  Principal component analysis: a method for determining the essential dynamics of proteins. , 2014, Methods in molecular biology.

[21]  Mohamed Nadif,et al.  Beyond cluster labeling: Semantic interpretation of clusters' contents using a graph representation , 2014, Knowl. Based Syst..

[22]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[23]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[24]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[25]  George H. Dunteman,et al.  Principal Components Analysis , 1990 .

[26]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .