Wald’s Method and Nikulin-Rao-Robson Test

[1]  Xiaojun Zhu,et al.  On the existence and uniqueness of the maximum likelihood estimates of the parameters of Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples , 2014 .

[2]  Natalya Pya,et al.  Goodness-of-Fit Tests for the Power-Generalized Weibull Probability Distribution , 2013, Commun. Stat. Simul. Comput..

[3]  N. Balakrishnan,et al.  Multivariate measures of skewness for the skew-normal distribution , 2009, J. Multivar. Anal..

[4]  Mikhail Nikulin,et al.  Chi-squared goodness-of-fit test for right censored data , 2011 .

[5]  Mikhail Nikulin,et al.  Chi-Square Goodness-of-Fit Tests: Drawbacks and Improvements , 2011, International Encyclopedia of Statistical Science.

[6]  Mikhail Nikulin,et al.  Unbiased Estimators and Their Applications , 2011, International Encyclopedia of Statistical Science.

[7]  V. Voinov,et al.  A Modified Chi‐squared Goodness‐of‐fit Test for the Three‐parameter Weibull Distribution and its Applications in Reliability , 2010 .

[8]  Natalya Pya,et al.  A Comparative Study of Some Modified Chi-Squared Tests , 2009, Commun. Stat. Simul. Comput..

[9]  N. Balakrishnan,et al.  On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data , 2008 .

[10]  J. Doornik,et al.  An Omnibus Test for Univariate and Multivariate Normality , 2008 .

[11]  Mikhail Nikulin,et al.  Accelerated Life Models , 2008 .

[12]  Narayanaswamy Balakrishnan,et al.  The Generalized Birnbaum–Saunders Distribution and Its Theory, Methodology, and Application , 2008 .

[13]  V. Voinov,et al.  Recent Achievements in Modified Chi-Squared Goodness-of-Fit Testing , 2008 .

[14]  Debasis Kundu,et al.  On the hazard function of Birnbaum-Saunders distribution and associated inference , 2008, Comput. Stat. Data Anal..

[15]  Narayanaswamy Balakrishnan,et al.  Lifetime analysis based on the generalized Birnbaum-Saunders distribution , 2008, Comput. Stat. Data Anal..

[16]  Narayanaswamy Balakrishnan,et al.  A Vectorial Notion of Skewness and Its Use in Testing for Multivariate Symmetry , 2007 .

[17]  C. Mecklin,et al.  An Appraisal and Bibliography of Tests for Multivariate Normality , 2004 .

[18]  Debasis Kundu,et al.  Modified moment estimation for the two-parameter Birnbaum-Saunders distribution , 2003, Comput. Stat. Data Anal..

[19]  S. Gulati,et al.  Goodness of Fit Statistics for the Exponential Distribution When the Data Are Grouped , 2003 .

[20]  Norbert Henze,et al.  Invariant tests for multivariate normality: a critical review , 2002 .

[21]  Pedro Puig,et al.  The Best Test of Exponentiality against Singly Truncated Normal Alternatives , 1999 .

[22]  I. Ahmad,et al.  A Goodness‐of‐fit Test for Exponentiality Based on the Memoryless Property , 1999 .

[23]  Norbert Henze,et al.  A New Approach to the BHEP Tests for Multivariate Normality , 1997 .

[24]  G. S. Mudholkar,et al.  A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data , 1996 .

[25]  P. Greenwood,et al.  A Guide to Chi-Squared Testing , 1996 .

[26]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[27]  Stephen Warwick Looney,et al.  How to Use Tests for Univariate Normality to Assess Multivariate Normality , 1995 .

[28]  Myles Hollander,et al.  A Chi-Squared Goodness-of-Fit Test for Randomly Censored Data , 1992 .

[29]  Ali S. Hadi,et al.  A note on generalized wald’s method , 1990 .

[30]  R. D'Agostino,et al.  A Suggestion for Using Powerful and Informative Tests of Normality , 1990 .

[31]  N. Hjort Goodness of fit tests in models for life history data based on cumulative hazard rates , 1990 .

[32]  Steven Ascher A survey of tests for exponentiality , 1990 .

[33]  M. Akritas Pearson-Type Goodness-of-Fit Tests: The Univariate Case , 1988 .

[34]  J. Spinelli Tests for exponentiality when origin and scale parameters are unknown , 1987 .

[35]  On the optimality and a generalization of Rao-Robson's statistic , 1987 .

[36]  M. Srivastava,et al.  On assessing multivariate normality based on shapiro-wilk W statistic , 1987 .

[37]  D. R. Thomas,et al.  Chi-Square Goodness-if-Fit Tests for Randomly Censored Data , 1986 .

[38]  Charles E. McCulloch Relationships among some chi-square goodness of fit statistics , 1985 .

[39]  D. S. Moore,et al.  Measures of lack of fit from tests of chi-squared type , 1984 .

[40]  David S. Moore,et al.  The Effect of Dependence on Chi-Squared and Empiric Distribution Tests of Fit , 1983 .

[41]  J. Royston Some Techniques for Assessing Multivarate Normality Based on the Shapiro‐Wilk W , 1983 .

[42]  Empirical power study of a multi-sample test of exponentiality based on spacings , 1983 .

[43]  David S. Moore,et al.  The Effect of Dependence on Chi Squared Tests of Fit , 1982 .

[44]  Charles E. McCulloch,et al.  Symmetric Matrix Derivatives with Applications , 1982 .

[45]  David S. Moore,et al.  Chi-square tests for multivariate normality with application to common stock prices , 1981 .

[46]  Donald A. Pierce,et al.  Neyman's Smooth Goodness-of-Fit Test When the Hypothesis Is Composite , 1979 .

[47]  S. Stigler Do Robust Estimators Work with Real Data , 1977 .

[48]  David S. Moore,et al.  Generalized Inverses, Wald's Method, and the Construction of Chi-Squared Tests of Fit , 1977 .

[49]  D. Robson,et al.  The X2-goodness-of-fit tests with moment type estimators , 1976 .

[50]  Mikhail Nikulin,et al.  On a Modification of the Standard Statistics of Pearson , 1975 .

[51]  L. J. Bain,et al.  Tests of Two-Parameter Exponentialty Against Three-Parameter Weibull Alternatives , 1975 .

[52]  David S. Moore,et al.  Unified Large-Sample Theory of General Chi-Squared Statistics for Tests of Fit , 1975 .

[53]  M. Nikulin,et al.  Chi-Square Test for Continuous Distributions with Shift and Scale Parameters , 1974 .

[54]  K C Rao,et al.  A chi-squabe statistic for goodies-of-fit tests within the exponential family , 1974 .

[55]  S. J. Press,et al.  Applied Multivariate Analysis. , 1973 .

[56]  A. Afifi,et al.  On Tests for Multivariate Normality , 1973 .

[57]  J. Gurland,et al.  Goodness of Fit Tests for the Gamma and Exponential Distributions , 1972 .

[58]  Ram C. Dahiya,et al.  Pearson chi-squared test of fit with random intervals , 1972 .

[59]  D. S. Moore,et al.  A CHI-SQUARE STATISTIC WITH RANDOM CELL BOUNDARIES' , 1971 .

[60]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[61]  Charles J. Kowalski,et al.  The Performance of Some Rough Tests for Bivariate Normality Before and After Coordinate Transformations to Normality , 1970 .

[62]  Sam C. Saunders,et al.  Estimation for a family of life distributions with applications to fatigue , 1969, Journal of Applied Probability.

[63]  Z. Birnbaum,et al.  A new family of life distributions , 1969, Journal of Applied Probability.

[64]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[65]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[66]  G. S. Watson,et al.  On Chi‐Square Goodness‐Of‐Fit Tests for Continuous Distributions , 1958 .

[67]  H. Chernoff,et al.  The Use of Maximum Likelihood Estimates in {\chi^2} Tests for Goodness of Fit , 1954 .

[68]  E. J. Gumbel,et al.  Applications of the Circular Normal Distribution , 1954 .

[69]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .