Gradient Estimation Revitalized

We investigate the use of a Fourier-domain derivative error kernel to quantify the error incurred while estimating the gradient of a function from scalar point samples on a regular lattice. We use the error kernel to show that gradient reconstruction quality is significantly enhanced merely by shifting the reconstruction kernel to the centers of the principal lattice directions. Additionally, we exploit the algebraic similarities between the scalar and derivative error kernels to design asymptotically optimal gradient estimation filters that can be factored into an infinite impulse response interpolation prefilter and a finite impulse response directional derivative filter. This leads to a significant performance gain both in terms of accuracy and computational efficiency. The interpolation prefilter provides an accurate scalar approximation and can be re-used to cheaply compute directional derivatives on-the-fly without the need to store gradients. We demonstrate the impact of our filters in the context of volume rendering of scalar data sampled on the Cartesian and Body-Centered Cubic lattices. Our results rival those obtained from other competitive gradient estimation methods while incurring no additional computational or storage overhead.

[1]  Michael E. Goss,et al.  An adjustable gradient filter for volume visualization image enhancement , 1994 .

[2]  Torsten Möller,et al.  Toward High-Quality Gradient Estimation on Regular Lattices , 2011, IEEE Transactions on Visualization and Computer Graphics.

[3]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[4]  Balázs Csébfalvi,et al.  An Evaluation of Prefiltered Reconstruction Schemes for Volume Rendering , 2008, IEEE Transactions on Visualization and Computer Graphics.

[5]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[6]  Michael Unser,et al.  B-spline signal processing. I. Theory , 1993, IEEE Trans. Signal Process..

[7]  Dimitri Van De Ville,et al.  Quasi-Interpolating Spline Models for Hexagonally-Sampled Data , 2007, IEEE Transactions on Image Processing.

[8]  Michael Unser,et al.  General Hilbert space framework for the discretization of continuous signal processing operators , 1995, Optics + Photonics.

[9]  M. Unser,et al.  Interpolation Revisited , 2000, IEEE Trans. Medical Imaging.

[10]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[11]  Ramsay Dyer,et al.  Linear and cubic box splines for the body centered cubic lattice , 2004, IEEE Visualization 2004.

[12]  D. den Hertog,et al.  Gradient Estimation Using Lagrange Interpolation Polynomials , 2008 .

[13]  Laurent Condat,et al.  Quantitative Error Analysis for the Reconstruction of Derivatives , 2011, IEEE Transactions on Signal Processing.

[14]  H. Hauser,et al.  Mastering Windows: Improving Reconstruction , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[15]  A.K. Krishnamurthy,et al.  Multidimensional digital signal processing , 1985, Proceedings of the IEEE.

[16]  Thierry Blu,et al.  Linear interpolation revitalized , 2004, IEEE Transactions on Image Processing.

[17]  Klaus Mueller,et al.  Space-time points: 4D splatting on efficient grids , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[18]  C. D. Boor,et al.  Box splines , 1993 .

[19]  Calyampudi R. Rao Handbook of statistics , 1980 .

[20]  Thomas Malzbender,et al.  Frequency Analysis of Gradient Estimators in Volume Rendering , 1996, IEEE Trans. Vis. Comput. Graph..

[21]  Akram Aldroubi,et al.  B-SPLINE SIGNAL PROCESSING: PART I-THEORY , 1993 .

[22]  Eduard Gröller,et al.  Optimal regular volume sampling , 2001, Proceedings Visualization, 2001. VIS '01..

[23]  L. M. MILNE-THOMSON,et al.  Vector and Tensor Analysis , 1949, Nature.

[24]  Herbert Hamers,et al.  Gradient Estimation Schemes for Noisy Functions , 2003 .

[25]  Thierry Blu,et al.  Quantitative Fourier Analysis of Approximation Techniques : Part I — Interpolators and Projectors , 1999 .

[26]  Eero P. Simoncelli,et al.  Differentiation of discrete multidimensional signals , 2004, IEEE Transactions on Image Processing.

[27]  Dimitri Van De Ville,et al.  High‐Quality Volumetric Reconstruction on Optimal Lattices for Computed Tomography , 2009, Comput. Graph. Forum.

[28]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[29]  Yonina C. Eldar,et al.  Nonideal sampling and interpolation from noisy observations in shift-invariant spaces , 2006, IEEE Transactions on Signal Processing.

[30]  Torsten Möller,et al.  A Fast Fourier Transform with Rectangular Output on the BCC and FCC Lattices , 2009 .

[31]  Klaus Mueller,et al.  A comparison of normal estimation schemes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[32]  T. Moller,et al.  Design of accurate and smooth filters for function and derivative reconstruction , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[33]  M. Mboup,et al.  An algebraic method for multi-dimensional derivative estimation , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[34]  Daniel Weiskopf,et al.  On visual quality of optimal 3D sampling and reconstruction , 2007, GI '07.

[35]  Dimitri Van De Ville,et al.  Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[36]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[37]  R. Mersereau,et al.  The processing of periodically sampled multidimensional signals , 1983 .

[38]  Balázs Csébfalvi,et al.  Prefiltered Gradient Reconstruction for Volume Rendering , 2009, J. WSCG.

[39]  Balbir Kumar,et al.  Digital differentiators , 1993, Signal Processing and its Applications.

[40]  Eero P. Simoncelli,et al.  Differentiation of Discrete Multi-Dimensional Signals , 2004 .

[41]  G. Strang,et al.  A Fourier Analysis of the Finite Element Variational Method , 2011 .