Local model approximation in the real time wave forecasting

The notion of data assimilation is common in most wave predictions. This typically means nudging of wave observations into numerical predictions so as to drive the predictions towards the observations. In this approach, the predicted wave climate is corrected at each time of the observation. However, the corrections would diminish soon in the absence of future observations. To drive the model state predictions towards real time climatology, the updating has to be carried out in the forecasting horizon too. This could be achieved if the wave forecasting at the observational network is made available. The present study addresses a wave forecasting technique for a discrete observation station using local models. Embedding theorem based on the time-lagged embedded vector is the basis for the local model. It is a powerful tool for time series forecasting. The efficiency of the forecasting model as an error correction tool (by combining the model predictions with the measurements) has been brought up in a forecasting horizon from few hours to 24 h. The parameters driving the local model are optimised using evolutionary algorithms.