Chalcogenide glasses for advanced photonic and photovoltaic applications

[1]  Rana Biswas,et al.  Nano-crystalline silicon solar cell architecture with absorption at the classical 4n(2) limit. , 2011, Optics express.

[2]  Keiji Tanaka Photoinduced structural changes in amorphous semiconductors , 1998 .

[3]  Mark L. Schattenburg,et al.  High fidelity blazed grating replication using nanoimprint lithography , 2004 .

[4]  K. Saravanamuttu,et al.  Modulation instability of incandescent light in a photopolymer doped with Ag nanoparticles , 2012 .

[5]  Pao Tai Lin,et al.  Inverted-Rib Chalcogenide Waveguides by Solution Process , 2014 .

[6]  T. Harada,et al.  Mechanically ruled aberration-corrected concave gratings. , 1980, Applied optics.

[7]  S. Hegedus,et al.  Analysis of quantum efficiency and optical enhancement in amorphous Si p–i–n solar cells , 2002 .

[8]  Ray G. DeCorby,et al.  Robust and Flexible Free‐Standing All‐Dielectric Omnidirectional Reflectors , 2007 .

[9]  Masaki Asobe,et al.  Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching , 1997 .

[10]  Steve Madden,et al.  Low loss high index contrast nanoimprinted polysiloxane waveguides. , 2009, Optics express.

[11]  Jamie D. Phillips,et al.  Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms , 2008 .

[12]  Chung-Yen Chao,et al.  Polymer microring resonators fabricated by nanoimprint technique , 2002 .

[13]  Dayu Zhou,et al.  Photonic crystal enhanced light-trapping in thin film solar cells , 2008 .

[14]  J. Joannopoulos,et al.  Omnidirectional reflection from a one-dimensional photonic crystal. , 1998, Optics letters.

[15]  Virginie Nazabal,et al.  Sputtering and Pulsed Laser Deposition for Near‐ and Mid‐Infrared Applications: A Comparative Study of Ge25Sb10S65 and Ge25Sb10Se65 Amorphous Thin Films , 2011 .

[16]  Helmut Schift,et al.  Fabrication of 3D nanoimprint stamps with continuous reliefs using dose-modulated electron beam lithography and thermal reflow , 2010 .

[17]  Paras N. Prasad,et al.  Sol−Gel-Processed SiO2/TiO2/Poly(vinylpyrrolidone) Composite Materials for Optical Waveguides , 1996 .

[18]  Shyam Singh,et al.  Diffraction gratings: aberrations and applications , 1999 .

[19]  Trevor M. Benson,et al.  One-step hot embossing of optical rib waveguides in chalcogenide glasses , 2008 .

[20]  Light trapping in thin crystalline silicon solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[21]  Candice Tsay,et al.  Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides. , 2010, Optics express.

[22]  E. Yablonovitch Statistical ray optics , 1982 .

[23]  Fatima Toor,et al.  Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits. , 2010, Optics letters.

[24]  C. Ballif,et al.  Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell , 2013, Light: Science & Applications.

[25]  Rajeewa R. Arya,et al.  Absorption enhancement in hydrogenated amorphous silicon‐based solar cells , 1990 .

[26]  T. Barwicz,et al.  Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides , 2005, Journal of Lightwave Technology.

[27]  Tymon Barwicz,et al.  Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices , 2003 .

[28]  Jingbo Cai,et al.  Parallel microgenetic algorithm design for photonic crystal and waveguide structures. , 2003, Optics letters.

[29]  X. Sheng,et al.  Design and Non‐Lithographic Fabrication of Light Trapping Structures for Thin Film Silicon Solar Cells , 2011, Advanced materials.

[30]  Zongfu Yu,et al.  Limit of nanophotonic light-trapping in solar cells , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[31]  Gwonjong Yu,et al.  Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE) , 2011 .

[32]  X. Sheng,et al.  Integration of Self-Assembled Porous Alumina and Distributed Bragg Reflector for Light Trapping in Si Photovoltaic Devices , 2010, IEEE Photonics Technology Letters.

[33]  Kathleen Richardson,et al.  Demonstration of chalcogenide glass racetrack microresonators. , 2008, Optics letters.

[34]  Rolf Brendel,et al.  Thin-Film Crystalline Silicon Solar Cells: Physics and Technology , 2003 .

[35]  Geert Morthier,et al.  A PSQ-L Polymer Microring Resonator Fabricated by a Simple UV-Based Soft-Lithography Process , 2009 .

[36]  Larry R. Dalton,et al.  Fabrication and Replication of Polymer Integrated Optical Devices Using Electron-Beam Lithography and Soft Lithography † , 2004 .

[37]  B. Luther-Davies,et al.  Annealing induced phase transformations in amorphous As2S3 films , 2006 .

[38]  Meng-Chi Huang,et al.  Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology , 2008, Nanotechnology.

[39]  Craig B. Arnold,et al.  A review on solution processing of chalcogenide glasses for optical components , 2013 .

[40]  M. Lipson,et al.  Electrically driven silicon resonant light emitting device based on slot-waveguide. , 2005, Optics express.

[41]  Kathleen Richardson,et al.  Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. , 2007, Optics express.

[42]  L. Guo,et al.  High‐Speed Roll‐to‐Roll Nanoimprint Lithography on Flexible Plastic Substrates , 2008 .

[43]  Michal Lipson,et al.  Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide. , 2005, Optics letters.

[44]  Pierre Lucas,et al.  Energy landscape and photoinduced structural changes in chalcogenide glasses , 2006 .

[45]  H. Jain,et al.  Structure of As–Se and As–P–Se glasses studied by Raman spectroscopy , 2003 .

[46]  L.J. Guo,et al.  Reduction of surface scattering loss in polymer microrings using thermal-reflow technique , 2004, IEEE Photonics Technology Letters.

[47]  M. Frumar,et al.  Spin-coated As33S67−xSex thin films: the effect of annealing on structure and optical properties , 2006 .

[48]  Juejun Hu,et al.  Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. , 2010, Optics express.

[49]  Hod Lipson,et al.  Two-dimensional photonic crystals designed by evolutionary algorithms , 2005 .

[50]  Arvind Shah,et al.  Relation between substrate surface morphology and microcrystalline silicon solar cell performance , 2008 .

[51]  T. Wágner,et al.  Surface morphology of spin-coated As–S–Se chalcogenide thin films , 2007 .

[52]  R. Schropp,et al.  Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates , 2009 .

[53]  Kathleen Richardson,et al.  Final Shape of Precision Molded Optics: Part I—Computational Approach, Material Definitions and the Effect of Lens Shape , 2012 .

[54]  Hiroshi Fudouzi,et al.  Soft imprint lithography of a bulk chalcogenide glass , 2011 .

[55]  H L Offerhaus,et al.  Large bandwidth, highly efficient optical gratings through high index materials. , 2008, Optics express.

[56]  Nicolas Barreau,et al.  Impact of Cu-rich growth on the CuIn1−xGaxSe2 surface morphology and related solar cells behaviour , 2009 .

[57]  Steve Madden,et al.  Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating. , 2011, Optics express.

[58]  H. H. Lee,et al.  Capillary Force Lithography , 2001 .

[59]  N. Feng,et al.  Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers , 2002 .

[60]  H. Schift,et al.  Shape control of polymer reflow structures fabricated by nanoimprint lithography , 2011 .

[61]  Jasbinder S. Sanghera,et al.  Active and passive chalcogenide glass optical fibers for IR applications: a review , 1999 .

[62]  W C Cash Aspheric concave grating spectrographs. , 1984, Applied optics.

[63]  Abdolnasser Zakery,et al.  Optical properties and applications of chalcogenide glasses: a review , 2003 .

[64]  A. Ureña,et al.  Raman spectroscopy of chalcogenide thin films prepared by PLD , 2010 .

[65]  Jacques Lucas,et al.  A Family of Far‐Infrared‐Transmitting Glasses in the Ga–Ge–Te System for Space Applications , 2006 .

[66]  Hongtao Lin,et al.  Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[67]  G. Chern,et al.  Spin‐coated amorphous chalcogenide films , 1982 .

[68]  Zhenwu Lu,et al.  Lithographic fabrication of large diffractive optical elements on a concave lens surface. , 2002, Optics express.

[69]  L. Guo,et al.  Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. , 2009, ACS nano.

[70]  J. Nishii,et al.  Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass. , 2011, Optics letters.

[71]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[72]  Yong Chen,et al.  Roll in and roll out: a path to high-throughput nanoimprint lithography. , 2009, ACS nano.

[73]  Keiji Tanaka Optical nonlinearity in photonic glasses , 2005 .

[74]  Kathleen Richardson,et al.  Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. , 2010, Optics express.

[75]  Kimmo Paivasaari,et al.  Imprinting the nanostructures on the high refractive index semiconductor glass , 2011 .

[76]  Kathleen Richardson,et al.  Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.

[77]  Jeffrey E. Cotter,et al.  Optical intensity of light in layers of silicon with rear diffuse reflectors , 1998 .

[78]  Jacklyn Novak,et al.  Effect of annealing conditions on the physio-chemical properties of spin-coated As_2Se_3 chalcogenide glass films , 2012 .

[79]  Zongfu Yu,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[80]  H. Fujiwara,et al.  Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern , 2008 .

[81]  Kathleen Richardson,et al.  Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films , 2008 .

[82]  Larry R. Dalton,et al.  Polymer-based optical waveguides: Materials, processing, and devices , 2002 .

[83]  L. Eldada,et al.  Advances in polymer integrated optics , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[84]  Eli Yablonovitch,et al.  Optically enhanced amorphous silicon solar cells , 1983 .

[85]  Zongfu Yu,et al.  Angular constraint on light-trapping absorption enhancement in solar cells , 2010, 1009.5453.

[86]  A. Friesem,et al.  Resonant grating waveguide structures , 1997 .

[87]  M. Haney,et al.  A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects , 2013, Journal of Lightwave Technology.

[88]  L C Kimerling,et al.  Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction. , 2001, Optics letters.

[89]  Ming C. Wu,et al.  Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction , 2006, Journal of Microelectromechanical Systems.

[90]  Trevor M. Benson,et al.  Fine embossing of chalcogenide glasses - : a new fabrication route for photonic integrated circuits , 2006 .

[91]  S. Spector,et al.  Silicon waveguide sidewall smoothing by wet chemical oxidation , 2005, Journal of Lightwave Technology.

[92]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .

[93]  Jiyeon Choi,et al.  Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[94]  Safa Kasap,et al.  Amorphous films of Ag–As–S system prepared by spin-coating technique, preparation techniques and films physico-chemical properties , 2004 .

[95]  S. Madden,et al.  Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics. , 2009, Optics express.

[96]  J. Baumberg,et al.  Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates , 2012 .

[97]  Steven G. Johnson,et al.  Integrated photonic structures for light trapping in thin-film Si solar cells , 2012 .

[98]  M. Kondo,et al.  Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties , 2010 .

[99]  Angela B. Seddon,et al.  Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres , 2004 .

[100]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[101]  Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films , 2008, 0803.3989.

[102]  J. Meyer–Arendt INTRODUCTION TO CLASSICAL AND MODERN OPTICS , 1984 .

[103]  Michael Moeller,et al.  UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing , 2010 .

[104]  Salman Rosenwaks,et al.  Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films , 1995 .

[105]  J. D. Musgraves,et al.  Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range. , 2011, The Review of scientific instruments.

[106]  R. Schropp,et al.  Surface textured ZnO films for thin film solar cell applications by expanding thermal plasma CVD , 2001 .

[107]  Christi K. Madsen,et al.  Patterning chalcogenide glass by direct resist-free thermal nanoimprint , 2008 .

[108]  Martin A. Green,et al.  The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions , 2011 .

[109]  Alberto Salleo,et al.  Light trapping in thin-film silicon solar cells with submicron surface texture. , 2009, Optics express.

[110]  Andrew Blakers,et al.  Texturing of polycrystalline silicon , 1996 .

[111]  Craig B. Arnold,et al.  Spin-coating of Ge23Sb7S70 chalcogenide glass thin films , 2009 .

[112]  G. Wegner,et al.  Optical properties of composites of PMMA and surface-modified zincite nanoparticles , 2007 .

[113]  T. Wágner,et al.  The comparison of Ag–As33S67 films prepared by thermal evaporation (TE), spin-coating (SC) and a pulsed laser deposition (PLD) , 2007 .

[114]  R. Swanepoel Determination of the thickness and optical constants of amorphous silicon , 1983 .

[115]  Mukul Agrawal,et al.  Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. , 2010, Optics express.

[116]  Candice Tsay,et al.  Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides. , 2010, Optics express.

[117]  Kathleen Richardson,et al.  Role of S∕Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies , 2005 .

[118]  Ching-Fuh Lin,et al.  Silicon Waveguide Sidewall Smoothing by KrF Excimer Laser Reformation , 2009, Journal of Lightwave Technology.

[119]  Kathleen Richardson,et al.  Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques , 2011 .

[120]  F. Payne,et al.  Radiation loss from planar waveguides with random wall imperfections , 1990 .

[121]  T. Wágner,et al.  Physico-chemical properties of spin-coated Ag–As–Sb–S films , 2005 .

[122]  Can Peng,et al.  High fidelity fabrication of microlens arrays by nanoimprint using conformal mold duplication and low-pressure liquid material curing , 2007 .

[123]  Marko Topič,et al.  Potential of light trapping in microcrystalline silicon solar cells with textured substrates , 2003 .

[124]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[125]  Domenico Pacifici,et al.  How much can guided modes enhance absorption in thin solar cells? , 2009, Optics express.

[126]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[127]  Gang Chen,et al.  Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. , 2010, Nano letters.

[128]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[129]  B. Eggleton,et al.  Influence of Annealing Conditions on the Optical and Structural Properties of Spin-coated as 2 S 3 Chalcogenide Glass Thin Films References and Links , 2022 .

[130]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[131]  C. Pantano,et al.  Solution/gelation of arsenic trisulfide in amine solvents , 1989 .

[132]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[133]  M. Houng,et al.  Wet-etch texturing of ZnO:Ga back layer on superstrate-type microcrystalline silicon solar cells , 2011 .

[134]  J. David Musgraves,et al.  Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system , 2011 .

[135]  Tomas Kohoutek,et al.  Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films. , 2009, Optics letters.

[136]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[137]  M. Green,et al.  The limiting efficiency of silicon solar cells under concentrated sunlight , 1986, IEEE Transactions on Electron Devices.