Texture analysis for muscular dystrophy classification in MRI with improved class activation mapping

[1]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[2]  Li Liu,et al.  Breast mass classification via deeply integrating the contextual information from multi-view data , 2018, Pattern Recognit..

[3]  Ting Liu,et al.  Recent advances in convolutional neural networks , 2015, Pattern Recognit..

[4]  Baihua Xiao,et al.  Learning completed discriminative local features for texture classification , 2017, Pattern Recognit..

[5]  J. Burakiewicz,et al.  Quantifying fat replacement of muscle by quantitative MRI in muscular dystrophy , 2017, Journal of Neurology.

[6]  S. Bensamoun,et al.  Impact of TIEG1 on the structural properties of fast‐ and slow‐twitch skeletal muscle , 2017, Muscle & nerve.

[7]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[8]  Marios Anthimopoulos,et al.  Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network , 2016, IEEE Transactions on Medical Imaging.

[9]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Quan Pan,et al.  Multi-band Polarization Imaging and Applications , 2016, Advances in Computer Vision and Pattern Recognition.

[11]  W. Rooney,et al.  Magnetic resonance imaging of the proximal upper extremity musculature in boys with Duchenne muscular dystrophy , 2016, Journal of Neurology.

[12]  Marek Kretowski,et al.  MRI Texture Analysis for Differentiation Between Healthy and Golden Retriever Muscular Dystrophy Dogs at Different Phases of Disease Evolution , 2015, CISIM.

[13]  Adel Hafiane,et al.  Joint Adaptive Median Binary Patterns for texture classification , 2015, Pattern Recognit..

[14]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[15]  Xiaoming Liu,et al.  Mass Classification in Mammograms Using Selected Geometry and Texture Features, and a New SVM-Based Feature Selection Method , 2014, IEEE Systems Journal.

[16]  Krista Vandenborne,et al.  Chemical shift‐based MRI to measure fat fractions in dystrophic skeletal muscle , 2014, Magnetic resonance in medicine.

[17]  Ivan Laptev,et al.  Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Andrew Zisserman,et al.  Return of the Devil in the Details: Delving Deep into Convolutional Nets , 2014, BMVC.

[19]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[20]  Qiang Chen,et al.  Network In Network , 2013, ICLR.

[21]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[22]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Krista Vandenborne,et al.  Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. , 2012, Physical medicine and rehabilitation clinics of North America.

[24]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[25]  M. Gaeta,et al.  Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments , 2012, Skeletal Radiology.

[26]  E. Bertini,et al.  Congenital Muscular Dystrophies: A Brief Review , 2011, Seminars in pediatric neurology.

[27]  Andrew Y. Ng,et al.  Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning , 2011, 2011 International Conference on Document Analysis and Recognition.

[28]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Shu Liao,et al.  Dominant Local Binary Patterns for Texture Classification , 2009, IEEE Transactions on Image Processing.

[30]  Vicente Gilsanz,et al.  Three-point technique of fat quantification of muscle tissue as a marker of disease progression in Duchenne muscular dystrophy: preliminary study. , 2008, AJR. American journal of roentgenology.

[31]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[32]  D. Birchall,et al.  MRI for the demonstration of subclinical muscle involvement in muscular dystrophy. , 2007, Clinical radiology.

[33]  Francesco Muntoni,et al.  Muscle MRI findings in patients with limb girdle muscular dystrophy with calpain 3 deficiency (LGMD2A) and early contractures , 2005, Neuromuscular Disorders.

[34]  E. Mercuri,et al.  Clinical and imaging findings in six cases of congenital muscular dystrophy with rigid spine syndrome linked to chromosome 1p (RSMD1) , 2002, Neuromuscular Disorders.

[35]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[36]  W. T. Dixon Simple proton spectroscopic imaging. , 1984, Radiology.