Existence Analysis of Maxwell-Stefan Systems for Multicomponent Mixtures

Maxwell-Stefan systems describing the dynamics of the molar concentrations of a gas mixture with an arbitrary number of components are analyzed in a bounded domain under isobaric, isothermal conditions. The systems consist of mass balance equations and equations for the chemical potentials, depending on the relative velocities, supplemented with initial and homogeneous Neumann boundary conditions. Global-in-time existence of bounded weak solutions to the quasilinear parabolic system and their exponential decay to the homogeneous steady state are proved. The mathematical difficulties are due to the singular Maxwell-Stefan diffusion matrix, the cross-diffusion coupling, and the lack of standard maximum principles. Key ideas of the proofs are the Perron-Frobenius theory for quasi-positive matrices, entropy-dissipation methods, and a new entropy variable formulation allowing for the proof of nonnegative lower and upper bounds for the concentrations.

[1]  G. B. The Dynamical Theory of Gases , 1916, Nature.

[2]  C. B. Moyer,et al.  An analysis of the coupled chemically reacting boundary layer and charring ablator, part 1 Summary report , 1968 .

[3]  E. P. Bartlett,et al.  An analysis of the coupled chemically reacting boundary layer and charring ablator. Part 4 - A unified approximation for mixture transport properties for multicomponent boundary-layer applications , 1968 .

[4]  P. Degond,et al.  A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects , 1997 .

[5]  Ansgar Jüngel,et al.  Cross Diffusion Preventing Blow-Up in the Two-Dimensional Keller-Segel Model , 2011, SIAM J. Math. Anal..

[6]  Francesco Salvarani,et al.  The Maxwell-Stefan Diffusion Limit for a Kinetic Model of Mixtures , 2015 .

[7]  George D. Verros,et al.  On the Maxwell‐Stefan Equations for Multi‐component Diffusion , 2009 .

[8]  Dario Götz,et al.  DIFFUSION MODELS OF MULTICOMPONENT MIXTURES IN THE LUNG , 2010 .

[9]  Neal R. Amundson,et al.  Diffusing with Stefan and Maxwell , 2003 .

[10]  R. Hentschke Non-Equilibrium Thermodynamics , 2014 .

[11]  Horst R. Thieme,et al.  Mathematics in Population Biology , 2003 .

[12]  Laurent Desvillettes,et al.  Global Existence for Quadratic Systems of Reaction-Diffusion , 2007 .

[13]  Ansgar Jüngel,et al.  Analysis of a Multidimensional Parabolic Population Model with Strong Cross-Diffusion , 2004, SIAM J. Math. Anal..

[14]  Ansgar Jüngel,et al.  ENTROPY STRUCTURE OF A CROSS-DIFFUSION TUMOR-GROWTH MODEL , 2012 .

[15]  A. Arnold,et al.  On generalized Csiszár-Kullback inequalities , 2000 .

[16]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[17]  Ansgar Jüngel,et al.  Compact families of piecewise constant functions in Lp(0,T;B) , 2012 .

[18]  Herbert Amann,et al.  Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems , 1990, Differential and Integral Equations.

[19]  Jens Markus Melenk,et al.  Institute for Analysis and Scientific Computing , 2015 .

[20]  Rajamani Krishna,et al.  Mass Transfer in Multicomponent Mixtures , 2006 .

[21]  V. Giovangigli Multicomponent flow modeling , 1999 .

[22]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[23]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities , 2014 .

[24]  Francesco Salvarani,et al.  A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations , 2012 .

[25]  Ansgar Jüngel,et al.  A Parabolic Cross-Diffusion System for Granular Materials , 2003, SIAM J. Math. Anal..

[26]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[27]  H. L. Toor,et al.  An experimental study of three component gas diffusion , 1962 .