Enhancing non-Markovianity by quantum feedback control

Manipulation of non-Markovian dynamics of open quantum systems has become an important topic in the field of quantum information since quantum non-Markovianity has been proved to be a potential quantum resource. Here, focusing on a simple yet well-known model of a two-level system coupled to bosonic fields, we study how to control the non-Markovian dynamics of an open quantum system using quantum-jump-based feedback control. Numerical simulations show that the quantum-jump-based feedback control can be used to enhance the measure of non-Markovianity. We find that the non-Markovianity can further be optimized by choosing appropriate feedback amplitude. These results may trigger potential applications in exploring non-Markovian effect for future quantum technology and quantum memory.

[1]  G. Karpat,et al.  Non-Markovianity through Accessible Information , 2014, 1402.5395.

[2]  J. J. Hope,et al.  Stabilizing entanglement by quantum-jump-based feedback , 2007 .

[3]  G. Guo,et al.  Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems , 2011, 1109.2677.

[4]  E. B. Davies Quantum theory of open systems , 1976 .

[5]  Rosario Lo Franco,et al.  Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments , 2017 .

[6]  Da-Jian Zhang,et al.  Estimating Coherence Measures from Limited Experimental Data Available. , 2017, Physical review letters.

[7]  Jian Zou,et al.  Measuring non-Markovianity based on local quantum uncertainty , 2014 .

[8]  Jun-Hong An,et al.  Retrieving Ideal Precision in Noisy Quantum Optical Metrology. , 2019, Physical review letters.

[9]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[10]  Fabio Sciarrino,et al.  Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics , 2014, Scientific Reports.

[11]  Heng Fan,et al.  Hierarchical-environment-assisted non-Markovian speedup dynamics control , 2018, Physical Review A.

[12]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[13]  Rosario Lo Franco,et al.  Coherence and entanglement dynamics of vibrating qubits , 2017, Optics Communications.

[14]  G. Falci,et al.  Recovering entanglement by local operations , 2012, 1207.3294.

[15]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[16]  M. Paternostro,et al.  Memory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chain , 2010, 1011.5653.

[17]  Giuseppe Compagno,et al.  Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling , 2014, 1408.6881.

[18]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[19]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[20]  Diego Wisniacki,et al.  Entangling protocols due to non-Markovian dynamics , 2017, Physical Review A.

[21]  Todd A. Brun,et al.  Abrupt transitions between Markovian and non-Markovian dynamics in open quantum systems , 2017 .

[22]  A. Dijkstra,et al.  Non-Markovian entanglement dynamics in the presence of system-bath coherence. , 2010, Physical review letters.

[23]  D. M. Tong,et al.  Non-Markovian quantum dissipative processes with the same positive features as Markovian dissipative processes , 2016 .

[24]  D. M. Tong,et al.  General approach to find steady-state manifolds in Markovian and non-Markovian systems , 2016, 1611.02800.

[25]  Jyrki Piilo,et al.  Measure for the non-Markovianity of quantum processes , 2010, 1002.2583.

[26]  F. Brito,et al.  A knob for Markovianity , 2014, 1404.2502.

[27]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[28]  Mauro Paternostro,et al.  Tuning non-Markovianity by spin-dynamics control , 2012, 1205.4535.

[29]  Yi Peng,et al.  Quantum coherence and geometric quantum discord , 2017, Physics Reports.

[30]  S. Maniscalco,et al.  Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective , 2014, Scientific Reports.

[31]  X. Yi,et al.  Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems , 2010, 1009.2159.

[32]  L. Aolita,et al.  Open-system dynamics of entanglement:a key issues review , 2014, Reports on progress in physics. Physical Society.

[33]  S. Luo,et al.  Quantifying non-Markovianity via correlations , 2012 .

[34]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[35]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[36]  Zhong-Xiao Man,et al.  Cavity-based architecture to preserve quantum coherence and entanglement , 2015, Scientific Reports.

[37]  S. Olivares,et al.  Continuous-variable quantum key distribution in non-Markovian channels , 2010, 1011.0304.

[38]  Heinz-Peter Breuer,et al.  Foundations and measures of quantum non-Markovianity , 2012, 1206.5346.

[39]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.

[40]  S. Maniscalco,et al.  DYNAMICS OF QUANTUM CORRELATIONS IN TWO-QUBIT SYSTEMS WITHIN NON-MARKOVIAN ENVIRONMENTS , 2012, 1205.6419.

[41]  Francesco Ciccarello,et al.  Dynamical decoupling efficiency versus quantum non-Markovianity , 2015, 1502.02528.

[42]  Ali Mortezapour,et al.  Protecting quantum resources via frequency modulation of qubits in leaky cavities , 2018, Scientific Reports.

[43]  S. Wissmann,et al.  Optimal state pairs for non-Markovian quantum dynamics , 2012, 1209.4989.

[44]  Jyrki Piilo,et al.  Driven harmonic oscillator as a quantum simulator for open systems , 2006, quant-ph/0601081.

[45]  Guang-Can Guo,et al.  Experimental recovery of quantum correlations in absence of system-environment back-action , 2013, Nature Communications.

[46]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[47]  Gerardo Adesso,et al.  Characterizing non-Markovianity via quantum interferometric power , 2015, 1501.02335.

[48]  Zhong-Xiao Man,et al.  Non-Markovian dynamics of a two-level system in the presence of hierarchical environments. , 2015, Optics express.

[49]  G. J. Milburn,et al.  Dynamical creation of entanglement by homodyne-mediated feedback (9 pages) , 2004, quant-ph/0409154.