3차원 재구성과 추정된 옵티컬 플로우 기반 가려진 객체 움직임 추적방법

거울 신경 세포는 동물이 어떤 동작을 할 때와 그 동물이 다른 동물의 동일한 동작을 하는 것을 관찰 할 때, 똑같은 세포 발화를 하는 신경세포이다. 본 논문에서는 거울 신경 세포의 발화 원리를 이용하여 비슷한 방법으로 보이지 않는 부분에 대한 객체의 움직임을 추적하는 방법을 3차원 재구축 방법을 통해 제안한다. 거울 신경 세포 시스템과 같은 발화 원리를 통해 의도 인지 시스템을 구축하기 위해, 스테레오 카메라를 통해 획득한 두 개의 이미지 데이터를 통해 깊이 정보를 계산하여 3차원으로 재구축한다. 3차원 재구축을 통해 만들어진 이미지 데이터를 옵티컬 플로우를 사용하여 3차원 이미지에서 객체의 움직임 방향을 추정한다. Estimation 알고리즘인 칼만 필터를 사용하여 객체의 움직임 추정을 잡음에 강인하게 한다. 객체의 움직임 추정을 통하여 객체의 움직임에 따라 구축된 이미지 데이터를 히스토리화 하여 데이터를 저장한다. 객체의 일부분 혹은 전체가 다른 물체로 인해 가려져 스테레오 카메라 시야에서 사라졌을 때, 과거에 저장된 히스토리로 부터 데이터를 가져와 가려진 부분에 대한 객체의 원래의 모습을 복원한다. 이 복원을 통하여 움직임 추정을 한다.