A new look at departure time choice equilibrium models with heterogeneous users

[1]  Benjamin H. Stevens,et al.  A MODEL FOR THE DISTRIBUTION OF RESIDENTIAL ACTIVITY IN URBAN AREAS. , 1960 .

[2]  W. Vickrey Congestion Theory and Transport Investment , 1969 .

[3]  W. Vickrey PRICING, METERING, AND EFFICIENTLY USING URBAN TRANSPORTATION FACILITIES , 1973 .

[4]  Jorge J. Moré,et al.  Classes of functions and feasibility conditions in nonlinear complementarity problems , 1974, Math. Program..

[5]  W. Wheaton,et al.  Linear programming and locational equilibrium: The Herbert-Stevens model revisited , 1974 .

[6]  A. Tchen Inequalities for distributions with given marginals , 1976 .

[7]  G. Simons,et al.  Inequalities for Ek(X, Y) when the marginals are fixed , 1976 .

[8]  Chris Hendrickson,et al.  Schedule Delay and Departure Time Decisions in a Deterministic Model , 1981 .

[9]  Michael J. Smith,et al.  The Existence of a Time-Dependent Equilibrium Distribution of Arrivals at a Single Bottleneck , 1984, Transp. Sci..

[10]  Carlos F. Daganzo,et al.  The Uniqueness of a Time-dependent Equilibrium Distribution of Arrivals at a Single Bottleneck , 1985, Transp. Sci..

[11]  A. Palma,et al.  Economics of a bottleneck , 1986 .

[12]  M. Kuwahara Queue Evolution on Freeway Leading to a Single Core City during the Morning Peak , 1987 .

[13]  Y. Cohen,et al.  COMMUTER WELFARE UNDER PEAK-PERIOD CONGESTION TOLLS : WHO GAINS AND WHO LOSES? , 1987 .

[14]  Gordon F. Newell The Morning Commute for Nonidentical Travelers , 1987, Transp. Sci..

[15]  Alok Aggarwal,et al.  Notes on searching in multidimensional monotone arrays , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[16]  A. Palma,et al.  SCHEDULE DELAY AND DEPARTURE TIME DECISIONS WITH HETEROGENEOUS COMMUTERS , 1988 .

[17]  André de Palma,et al.  Route choice with heterogeneous drivers and group-specific congestion costs , 1992 .

[18]  André de Palma,et al.  The Welfare Effects Of Congestion Tolls With Heterogeneous Commuters , 1993 .

[19]  Masao Kuwahara,et al.  DYNAMIC EQUILIBRIUM ASSIGNMENT WITH QUEUES FOR A ONE-TO-MANY OD PATTERN. , 1993 .

[20]  Chen-Hsiu Laih,et al.  QUEUEING AT A BOTTLENECK WITH SINGLE- AND MULTI-STEP TOLLS , 1994 .

[21]  Peter Brucker,et al.  A Monge Property for the D-dimensional Transportation Problem , 1995, Discret. Appl. Math..

[22]  Masao Kuwahara,et al.  Decomposition of the reactive dynamic assignments with queues for a many-to-many origin-destination pattern , 1997 .

[23]  Richard Arnott,et al.  CONGESTION TOLLING AND URBAN SPATIAL STRUCTURE , 1998 .

[24]  Patrice Marcotte,et al.  A Note On The Uniqueness Of Solutions To The Transportation Problem , 1999 .

[25]  Torbjörn Larsson,et al.  On traffic equilibrium models with a nonlinear time/money relation , 2002 .

[26]  A. Hoffman ON SIMPLE LINEAR PROGRAMMING PROBLEMS , 2003 .

[27]  Robin Lindsey Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes , 2004, Transp. Sci..

[28]  Toshio Yoshii,et al.  MATHEMATICAL ANALYSIS OF EQUILIBRIUM IN DEPARTURE TIME CHOICE PROBLEMS , 2005 .

[29]  L. Kantorovich On a Problem of Monge , 2006 .

[30]  Takashi Akamatsu,et al.  TRADABLE TIME-OF-DAY BOTTLENECK PERMITS FOR MORNING COMMUTERS , 2006 .

[31]  Takashi Akamatsu A SYSTEM OF TRADABLE BOTTLENECK PERMITS FOR GENERAL NETWORKS , 2007 .

[32]  Toshio Yoshii,et al.  Equivalent Optimization Problem for Finding Equilibrium in the Bottleneck Model with Departure Time Choices , 2007 .

[33]  Rainer E. Burkard,et al.  Monge properties, discrete convexity and applications , 2007, Eur. J. Oper. Res..

[34]  H. Michael Zhang,et al.  Numerical solution procedures for the morning commute problem , 2009, Math. Comput. Model..

[35]  Satish V. Ukkusuri,et al.  Linear Complementarity Formulation for Single Bottleneck Model with Heterogeneous Commuters , 2010 .

[36]  Kentaro Wada,et al.  AN E-MARKET MECHANISM FOR IMPLEMENTING TRADABLE BOTTLENECK PERMITS , 2010 .

[37]  Vincent A. C. van den Berg,et al.  Winning or losing from dynamic bottleneck congestion pricing?: The distributional effects of road pricing with heterogeneity in values of time and schedule delay , 2011 .

[38]  Satish V. Ukkusuri,et al.  On the existence of pricing strategies in the discrete time heterogeneous single bottleneck model , 2011 .

[39]  Henry X. Liu,et al.  Continuous-time point-queue models in dynamic network loading , 2012 .

[40]  André de Palma,et al.  Congestion in a city with a central bottleneck , 2012 .

[41]  Erik T. Verhoef,et al.  Step tolling with bottleneck queuing congestion , 2012 .

[42]  Satish V. Ukkusuri,et al.  A continuous-time linear complementarity system for dynamic user equilibria in single bottleneck traffic flows , 2012, Math. Program..

[43]  Tao Yao,et al.  A partial differential equation formulation of Vickrey’s bottleneck model, part I: Methodology and theoretical analysis , 2013 .

[44]  Yu Nie,et al.  A Semi-Analytical Approach for Solving the Bottleneck Model with General User Heterogeneity , 2014 .

[45]  Erik T. Verhoef,et al.  Dynamic bottleneck congestion and residential land use in the monocentric city , 2014 .

[46]  Wen-Long Jin,et al.  Point queue models: A unified approach , 2014, 1405.7663.

[47]  Kentaro Wada,et al.  The corridor problem with discrete multiple bottlenecks , 2015 .

[48]  Jonathan D. Hall Pareto Improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways , 2015 .

[49]  M. Fosgerau Congestion in the bathtub , 2015 .

[50]  Yang Liu,et al.  Solving the Step-Tolled Bottleneck Model with General User Heterogeneity , 2015 .

[51]  Masao Kuwahara,et al.  Bottleneck congestion and residential location of heterogeneous commuters , 2017 .

[52]  Masao Kuwahara,et al.  Scheduling preferences, parking competition, and bottleneck congestion: A model of trip timing and parking location choices by heterogeneous commuters , 2020, Transportation Research Part C: Emerging Technologies.

[53]  Kentaro Wada,et al.  Tradable network permits: A new scheme for the most efficient use of network capacity , 2017 .

[54]  Takashi Akamatsu,et al.  First-best dynamic assignment of commuters with endogenous heterogeneities in a corridor network , 2018, Transportation Research Part B: Methodological.

[55]  Takatoshi Tabuchi,et al.  Equilibrium commuting , 2017, Economic Theory.

[56]  Takashi Akamatsu,et al.  First-best dynamic assignment of commuters with endogenous heterogeneities in a corridor network , 2018, Transportation Research Part B: Methodological.

[57]  Jonathan D. Hall Can Tolling Help Everyone? Estimating the Aggregate and Distributional Consequences of Congestion Pricing , 2020, Journal of the European Economic Association.

[58]  Hai Yang,et al.  Fifty years of the bottleneck model: A bibliometric review and future research directions , 2020, Transportation Research Part B: Methodological.