An object oriented segmentation on analog CNN chip

This paper introduces a real-time object oriented segmentation algorithm, designed and implemented on a new type of mixed analog/digital chip based on the cellular neural/nonlinear network (CNN) paradigm. The fully parallel architecture of the CNN processes all the pixels of an image at the same time, so the time spent for the image segmentation is independent of the number of objects in the image. This implementation of the segmentation algorithm is shown to well satisfy the real-time requirements both as a stand-alone processing procedure, and as a module inside the MPEG-4 video coding standard. Finally, the general purpose characteristics of the CNN universal chip allow to use the algorithm introduced as an efficient pre-processing procedure for many interesting image/video stand-alone applications.

[1]  Leon O. Chua,et al.  Turing patterns in CNNs. III. Computer simulation results , 1995 .

[2]  Tamás Szirányi,et al.  Object Oriented Motion-Segmentation for Video-Compression in the CNN-UM , 1999, J. VLSI Signal Process..

[3]  Murat Kunt,et al.  Spatiotemporal Segmentation Based on Region Merging , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  István Petrás,et al.  The CADETWin application software design system - a tutorial , 1999 .

[5]  V.M. Brea,et al.  Image segmentation based on active contours using discrete time cellular neural networks , 1998, 1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359).

[6]  Leon O. Chua,et al.  Turing patterns in CNNs. II. Equations and behaviors , 1995 .

[7]  John W. Tukey,et al.  Nonlinear (nonsuperposable) methods for smoothing data , 1974 .

[8]  Ángel Rodríguez-Vázquez,et al.  A VLSI-oriented continuous-time CNN model , 1996 .

[9]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[10]  Tamás Roska,et al.  The CNN universal machine: an analogic array computer , 1993 .

[11]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[12]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[13]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[14]  Leon O. Chua,et al.  Analogic CNN algorithms for some image compression and restoration tasks , 1995 .

[15]  István Petrás,et al.  CNN chip prototyping and development systems , 1999 .

[16]  Ákos Zarándy,et al.  An analogic CNN engine board with the 64/spl times/64 analog I/O CNN-UM chip , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[17]  Leon O. Chua,et al.  Several image processing examples by CNN , 1990, IEEE International Workshop on Cellular Neural Networks and their Applications.

[18]  Leon O. Chua,et al.  Turing patterns in CNNs. I. Once over lightly , 1995 .

[19]  Touradj Ebrahimi,et al.  Dynamic coding of visual information , 1997, IEEE Trans. Circuits Syst. Video Technol..

[20]  Sanjit K. Mitra,et al.  Nonlinear image processing , 2000 .

[21]  R. Haralick Image segmentation survey , 1982 .

[22]  A. Rodriguez-Vazquez,et al.  A 64/spl times/64 CNN universal chip with analog and digital I/O , 1998, 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology (Cat. No.98EX196).

[23]  P. Arena,et al.  Self-organization in a two-layer CNN , 1998 .

[24]  Ángel Rodríguez-Vázquez,et al.  ACE16k: A Programmable Focal Plane Vision Processor with 128 x 128 Resolution , 2001 .