An overview of reconstructability analysis

This paper is an overview of reconstructability analysis (RA), an approach to discrete multivariate modeling developed in the systems community. RA includes set‐theoretic modeling of relations and information‐theoretic modeling of frequency and probability distribution. It thus encompasses both statistical and nonstatistical problems. It overlaps with logic design and machine learning in engineering and with log‐linear modeling in the social sciences. Its generality gives it considerable potential for knowledge representation and data mining.

[1]  Bush Jones,et al.  Architecture of systems problem solving , 1986, Journal of the American Society for Information Science.

[2]  Àngela Nebot,et al.  COMBINED QUALITATIVE/QUANTITATIVE SIMULATION MODELS OF CONTINUOUS-TIME PROCESSES USING FUZZY INDUCTIVE REASONING TECHNIQUES , 1996 .

[3]  Gabor T. Herman,et al.  Image Reconstruction From Projections , 1975, Real Time Imaging.

[4]  François E. Cellier,et al.  SAPS-II: A NEW IMPLEMENTATION OF THE SYSTEMS APPROACH PROBLEM SOLVER , 1987 .

[5]  M. Zwick Wholes and Parts in General Systems Methodology , 2001 .

[6]  I. Good Maximum Entropy for Hypothesis Formulation, Especially for Multidimensional Contingency Tables , 1963 .

[7]  H. H. Ku Interaction in multidimensional contingency tables: an information theoretic approach , 1968 .

[8]  James P. Crutchfield,et al.  Discovering Noncritical Organization: Statistical Mechanical, Information Theoretic, and Computational Views of Patterns in One-Dimensional Spin Systems , 1998, Entropy.

[9]  Marek A. Perkowski,et al.  Multi-valued functional decomposition as a machine learning method , 1998, Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138).

[10]  H. Assa Set-Theoretic Reconstructability of Elementary Cellular Automata , 1995 .

[11]  W. Ashby,et al.  Constraint analysis of many-dimensional relations. , 1965, Progress in biocybernetics.

[12]  Bush Jones RECONSTRUCTABILITY ANALYSIS FOR GENERAL FUNCTIONS , 1985 .

[13]  Michael Pittarelli Reconstructability analysis using probability intervals , 1990 .

[14]  George G. Lendaris,et al.  Improving ANN generalization using a priori knowledge to pre-structure ANNs , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[15]  Anas N. Al-Rabadi,et al.  Modified reconstructability analysis for many‐valued functions and relations , 2004 .

[16]  Àngela Nebot,et al.  Combined Qualitative/Quantitative Simulation Models of Continuous-Time Processes using Fuzzy Inductive Reasoning Techniques , 1992 .

[17]  Jamshid Hosseini-Chaleshtari,et al.  Segment congruence analysis : an information theoretic approach , 1987 .

[18]  Bush Jones K-SYSTEMS VERSUS CLASSICAL MULTIVARIATE SYSTEMS , 1986 .

[19]  Gabor T. Herman,et al.  Image Reconstruction From Projections , 1975, Real Time Imaging.

[20]  M. Zwick,et al.  Reconstructability Analysis Detection of Optimal Gene Order in Genetic Algorithms , 2004 .

[21]  Marek Perkowski,et al.  Decomposition of Relations: A New Approach to Constructive Induction in Machine Learning and Data Mining -- An Overview , 2001 .

[22]  Martin Zwick,et al.  An Information Theoretic Framework for Exploratory Multivariate Market Segmentation Research , 1991 .

[23]  A. McCutcheon,et al.  Latent Class Analysis , 2021, Encyclopedia of Autism Spectrum Disorders.

[24]  R. Conant SET-THEORETIC STRUCTURE MODELLING , 1981 .

[25]  Martin Zwick,et al.  STATE-BASED RECONSTRUCTABILITY ANALYSIS , 2004 .

[26]  Martin Zwick,et al.  Directed Extended Dependency Analysis for Data Mining , 2004 .

[27]  Mark J. Wierman,et al.  GENETIC ALGORITHMS: A Search Technique Applied to Behavior Analysis , 1996 .

[28]  Bush Jones Reconstructability considerations with arbitrary data , 1985 .

[29]  Martin Zwick,et al.  RECONSTRUCTABILITY ANALYSIS WITH FOURIER TRANSFORMS , 2004 .

[30]  Martin Zwick,et al.  A SOFTWARE ARCHITECTURE FOR RECONSTRUCTABILITY ANALYSIS , 2004 .

[31]  G. Klir,et al.  Uncertainty-based information: Elements of generalized information theory (studies in fuzziness and soft computing). , 1998 .

[32]  George J. Klir,et al.  Third w. ross ashby memorial lecture 1986: Reconstructability analysis: An offspring of ashby's constraint analysis , 1986 .

[33]  William Ross Ashby,et al.  On temporal characteristics of behavior in certain complex systems , 1966, Kybernetik.

[34]  Gp Shaffer,et al.  K-systems analysis for determining the factors influencing benthic microfloral productivity in a Louisiana estuary, USA , 1988 .

[35]  G. Lendaris,et al.  Using A Priori Knowledge to Prestructure ANNs , 1994 .

[36]  M. Zwick CONTROL UNIQUENESS IN RECONSTRUCTABILITY ANALYSIS , 1996 .

[37]  B. Chambless,et al.  Information-theoretic feature selection for a neural behavioral model , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[38]  P. Holland,et al.  Discrete Multivariate Analysis. , 1976 .

[39]  Martin Zwick,et al.  State-Based Reconstructability Modeling for Decision Analysis , 2000 .

[40]  Alan Mishchenko,et al.  Implicit Representation of Discrete Objects , 2000 .

[41]  M. Perkowski,et al.  Multi‐level decomposition of probabilistic relations , 2004 .

[42]  G. Klir IDENTIFICATION OF GENERATIVE STRUCTURES IN EMPIRICAL DATA , 1976 .

[43]  Jeroen K. Vermunt,et al.  'EM: A general program for the analysis of categorical data 1 , 1997 .

[44]  Ashby Wr,et al.  Constraint analysis of many-dimensional relations. , 1965 .

[45]  Roger C. Conant,et al.  EXTENDED DEPENDENCY ANALYSIS OF LARGE SYSTEMS , 1988 .

[46]  George G. Lendaris,et al.  On Matching ANN Structure to Problem Domain Structure , 1993 .

[47]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[48]  George G. Lendaris,et al.  Prestructuring Neural Networks for Pattern Recognition Using Extended Dependency Analysis , 1999 .

[49]  Wentian Li,et al.  The Structure of the Elementary Cellular Automata Rule Space , 1990, Complex Syst..

[50]  Zhengxin Chen Qualitative reasoning for system reconstruction using Lebesgue discretization , 1994 .

[51]  Roger C. Conant EXTENDED DEPENDENCY ANALYSIS OF LARGE SYSTEMS∗ Part II: Static Analysis , 1988 .

[52]  Douglas Elias General systems problem solver: a frameworker for integrating systems methodologies , 1988 .

[53]  J. S. Long,et al.  Covariance Structure Models: An Introduction to LISREL , 1983 .

[54]  Peter Burke,et al.  Log-linear models , 1980 .

[55]  Janina Decker,et al.  Simulation and Model-Based Methodologies: An Integrative View , 1984, NATO ASI Series.

[56]  Klaus Krippendorff,et al.  AN ALGORITHM FOR IDENTIFYING STRUCTURAL MODELS OF MULTI-VAR1ATE DATA , 1981 .

[57]  Peter Cahoon,et al.  EXTRACTING INFORMATION FROM ECOLOGICAL DATA CONTAINING HIGH SPATIAL AND TEMPORAL VARIABILITY: BENTHIC MICROFLORAL PRODUCTION , 1987 .

[58]  J. Hagenaars Loglinear Models with Latent Variables , 1993 .

[59]  George G. Lendaris,et al.  Prestructuring ANNs via a priori knowledge (Abstract only) , 1995, SPIE Defense + Commercial Sensing.

[60]  Jae-On Kim,et al.  Factor Analysis: Statistical Methods and Practical Issues , 1978 .

[61]  Hugo J. J. Uyttenhove SAPS — A Software System for Inductive Modelling , 1984 .

[62]  Anas N. Al-Rabadi,et al.  A comparison of modified reconstructability analysis and Ashenhurst‐Curtis decomposition of Boolean functions , 2004 .

[63]  Klaus Krippendorff,et al.  Information Theory: Structural Models for Qualitative Data. , 1988 .

[64]  Bush Jones A PROGRAM FOR RECONSTRUCTABILUY ANALYSIS , 1989 .