Light ladders and clasp conjectures

Morphisms between tensor products of fundamental representations of the quantum group of sl(n) are described by the sl(n)-webs of Cautis-Kamnitzer-Morrison. Using these webs, we provide an explicit, root-theoretic formula for the local intersection forms attached to each summand of the tensor product of an irreducible representation with a fundamental representation. We prove this formula for n at most 4, and conjecture that it holds for all n. Given two sequences of fundamental weights which sum to the same dominant weight, the clasp is the morphism between the corresponding tensor products which projects to the top indecomposable summand. Using our computation of intersection forms, we provide a recursive, ``triple-clasp expansion'' formula for clasps. In addition, we describe the cellular structure on sl(n)-webs, and prove that sl(n)-webs are an integral form for tilting modules of quantum groups.

[1]  Elliott H Lieb,et al.  Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[3]  Greg Kuperberg Spiders for rank 2 Lie algebras , 1996 .

[4]  G. Lehrer,et al.  Cellular algebras , 1996 .

[5]  Greg Kuperberg,et al.  Web bases for sl(3) are not dual canonical , 1997, q-alg/9712046.

[6]  DAAN KRAMMER,et al.  Braid groups are , 2002 .

[7]  L. Migliorini,et al.  The Hodge theory of algebraic maps , 2003, math/0306030.

[8]  Graphical Calculus on Representations of Quantum Lie Algebras , 2003, math/0310143.

[9]  Bruce W. Westbury Enumeration of non-positive planar trivalent graphs , 2006 .

[10]  Jones-Wenzl idempotents for rank 2 simple Lie algebras , 2006, math/0602504.

[11]  Scott Morrison,et al.  A diagrammatic category for the representation theory of ( Uqsln ) , 2007, 0704.1503.

[12]  Bruce W. Westbury,et al.  Invariant tensors and cellular categories , 2008, 0806.4045.

[13]  Aaron D. Lauda,et al.  A categorification of quantum sl(n) , 2008, 0807.3250.

[14]  Geordie Williamson Singular Soergel bimodules , 2010, 1010.1283.

[16]  Antonio C. de A. Campello,et al.  On sequences of projections of the cubic lattice , 2011, ArXiv.

[17]  Generating basis webs for $\SL_n$ , 2011, 1108.4616.

[18]  Bruce W. Westbury Web bases for the general linear groups , 2010, 1011.6542.

[19]  Ben Elias,et al.  The Hodge theory of Soergel bimodules , 2012, 1212.0791.

[20]  Sabin Cautis Clasp technology to knot homology via the affine Grassmannian , 2012, 1207.2074.

[21]  Ben Elias,et al.  Soergel bimodules for universal Coxeter groups , 2014, 1401.2467.

[22]  Sabin Cautis,et al.  Webs and quantum skew Howe duality , 2012, 1210.6437.

[23]  Ben Elias Quantum Satake in type $A$. Part I , 2014, 1403.5570.

[24]  S. Morrison A Formula for the Jones-Wenzl Projections , 2015, 1503.00384.

[25]  H. H. Andersen,et al.  Q A ] 1 M ar 2 01 5 CELLULAR STRUCTURES USING U q-TILTING MODULES , 2015 .

[26]  Ben Elias,et al.  Kazhdan–Lusztig Conjectures and Shadows of Hodge Theory , 2014, 1403.1650.