Efficient modulo 2n + 1 multipliers for diminished-1 representation

An efficient architecture for diminished-1 modulo (2n+1) multipliers is described. The new architecture is built using a pure radix-4 Booth recoding block, an inverted end-around-carry carry save adder tree and a final diminished-1 adder. Although one correction term is used, the complexity of the circuit is very simple. There are n/2 partial products (PP), one simple correction term and one constant, each one n bits wide. The new multipliers can handle zero inputs and results. The analytical and experimental results indicate that the new multipliers offer better speed and more compact than previously published solutions.

[1]  Graham A. Jullien,et al.  An efficient tree architecture for modulo 2n+1 multiplication , 1996, J. VLSI Signal Process..

[2]  Akhilesh Tyagi,et al.  A Reduced-Area Scheme for Carry-Select Adders , 1993, IEEE Trans. Computers.

[3]  Chein-Wei Jen,et al.  High-Speed Booth Encoded Parallel Multiplier Design , 2000, IEEE Trans. Computers.

[4]  C. Efstathiou,et al.  Modified Booth modulo 2/sup n/-1 multipliers , 2004, IEEE Transactions on Computers.

[5]  L. Sousa,et al.  A universal architecture for designing efficient modulo 2/sup n/+1 multipliers , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Reto Zimmermann,et al.  Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).

[7]  Giorgos Dimitrakopoulos,et al.  Efficient diminished-1 modulo 2/sup n/ + 1 multipliers , 2005, IEEE Transactions on Computers.

[8]  A. Hiasat,et al.  New memoryless, mod (2n±1) residue multiplier , 1992 .

[9]  Haridimos T. Vergos,et al.  A Unifying Approach for Weighted and Diminished-1 Modulo $2^n+1$ Addition , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Richard Conway,et al.  Improved RNS FIR filter architectures , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Haridimos T. Vergos,et al.  Design of efficient modulo 2n+1 multipliers , 2007, IET Comput. Digit. Tech..

[12]  Hubert Kaeslin,et al.  Regular VLSI architectures for multiplication modulo (2/sup n/+1) , 1991 .

[13]  Yutai Ma A Slimplified Architecture for Modulo (2n + 1) Multiplication , 1998, IEEE Trans. Computers.

[14]  Haridimos T. Vergos,et al.  Handling zero in diminished-one modulo 2 n + 1 adders , 2003 .

[15]  O. L. Macsorley High-Speed Arithmetic in Binary Computers , 1961, Proceedings of the IRE.

[16]  L. Leibowitz A simplified binary arithmetic for the Fermat number transform , 1976 .

[17]  Haridimos T. Vergos,et al.  Diminished-One Modulo 2n+1 Adder Design , 2002, IEEE Trans. Computers.