Role of IKKα in skin squamous cell carcinomas.

Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are two major types of skin cancer derived from keratinocytes. SCC is a more aggressive type of cancer than BCC in humans. One significant difference between SCC and BCC is that SCC development is generally associated with cell dedifferentiation and morphological changes. When SCC is converted to spindle cell carcinoma, the latest stage of cancer, the tumor cells change to a fibroblastic cell morphology (epithelial-to-mesenchymal transition) and lose their differentiation markers. Recently, several laboratories have reported altered IκB kinase α (IKKα) protein localization, downregulated IKKα, and IKKα gene deletions and mutations in human SCCs of the skin, lung, esophagus, and neck and head. In addition, IKKα reduction promotes chemical carcinogen- and ultraviolet B-induced skin carcinogenesis, and IKKα deletion in keratinocytes causes spontaneous skin SCCs, but not BCCs, in mice. Thus, IKKα emerges as a bona fide skin tumor suppressor. In this article, we will discuss the role of IKKα in skin SCC development.

[1]  R. Salonen,et al.  Mutant CHUK and severe fetal encasement malformation. , 2010, The New England journal of medicine.

[2]  J. Jorcano,et al.  IKKbeta leads to an inflammatory skin disease resembling interface dermatitis. , 2010, The Journal of investigative dermatology.

[3]  W. Gong,et al.  Reduction of IKKalpha expression promotes chronic ultraviolet B exposure-induced skin inflammation and carcinogenesis. , 2010, The American journal of pathology.

[4]  A. Baldwin,et al.  Her2 Activates NF-κB and Induces Invasion Through the Canonical Pathway Involving IKKα , 2009, Oncogene.

[5]  S. Fischer,et al.  Critical role of IkappaB kinase alpha in embryonic skin development and skin carcinogenesis. , 2009, Histology and histopathology.

[6]  V. Speirs,et al.  Expression of COX-2, NF-κB-p65, NF-κB-p50 and IKKα in malignant and adjacent normal human colorectal tissue , 2009, British Journal of Cancer.

[7]  Bigang Liu,et al.  A tale of terminal differentiation: IKKα, the master keratinocyte regulator , 2009, Cell cycle.

[8]  B. Marinari,et al.  The tumor suppressor activity of IKKα in stratified epithelia is exerted in part via the TGF-β antiproliferative pathway , 2008, Proceedings of the National Academy of Sciences.

[9]  S. Fischer,et al.  IKKalpha is required to maintain skin homeostasis and prevent skin cancer. , 2008, Cancer cell.

[10]  J. Jorcano,et al.  IKKα enhances human keratinocyte differentiation and determines the histological variant of epidermal squamous cell carcinomas , 2008 .

[11]  M. Karin,et al.  IKKα is a critical coregulator of a Smad4-independent TGFβ-Smad2/3 signaling pathway that controls keratinocyte differentiation , 2008, Proceedings of the National Academy of Sciences.

[12]  S. Fischer,et al.  Reduction in IκB Kinase α Expression Promotes the Development of Skin Papillomas and Carcinomas , 2007 .

[13]  K. Imai,et al.  Epigenetic Inactivation of IκB Kinase-α in Oral Carcinomas and Tumor Progression , 2007, Clinical Cancer Research.

[14]  Jianjun Shen,et al.  IKKα Shields 14-3-3σ, a G2/M Cell Cycle Checkpoint Gene, from Hypermethylation, Preventing Its Silencing , 2007 .

[15]  W. Cai,et al.  An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. , 2007, The Journal of clinical investigation.

[16]  E. Birney,et al.  Patterns of somatic mutation in human cancer genomes , 2007, Nature.

[17]  Jinsong Liu,et al.  A critical role for IκB kinase α in the development of human and mouse squamous cell carcinomas , 2006, Proceedings of the National Academy of Sciences.

[18]  Brian Bierie,et al.  Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer , 2006, Nature Reviews Cancer.

[19]  P. Chambon,et al.  Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. , 2006, Human molecular genetics.

[20]  I. Verma,et al.  Identification of 14-3-3sigma mutation causing cutaneous abnormality in repeated-epilation mutant mouse. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  L. Siracusa,et al.  A mutation in stratifin is responsible for the repeated epilation (Er) phenotype in mice , 2005, Nature Genetics.

[22]  P. Pandolfi,et al.  Role of nucleophosmin in embryonic development and tumorigenesis , 2005, Nature.

[23]  M. Pelto-huikko,et al.  Shedding light on ADAM metalloproteinases. , 2005, Trends in biochemical sciences.

[24]  H. Ananthaswamy,et al.  Cellular and molecular events leading to the development of skin cancer. , 2005, Mutation research.

[25]  M. Karin,et al.  IκB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis , 2004, Nature.

[26]  H. Ljunggren,et al.  Tumor necrosis factor receptor 1-mediated signaling is required for skin cancer development induced by NF-kappaB inhibition. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  B. Goh,et al.  Epidermal Growth Factor Receptor in Undifferentiated Carcinoma of the Nasopharynx , 2004, The Laryngoscope.

[28]  E. Wagner,et al.  c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. , 2003, Developmental cell.

[29]  G. Courtois,et al.  TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2 , 2002, Nature.

[30]  M. Karin,et al.  Missing Pieces in the NF-κB Puzzle , 2002, Cell.

[31]  E. Schmidt,et al.  IKKα Provides an Essential Link between RANK Signaling and Cyclin D1 Expression during Mammary Gland Development , 2001, Cell.

[32]  D. Baltimore,et al.  Targeted Mutation of TNF Receptor I Rescues the RelA-Deficient Mouse and Reveals a Critical Role for NF-κB in Leukocyte Recruitment1 , 2001, The Journal of Immunology.

[33]  M. Karin,et al.  IKKα controls formation of the epidermis independently of NF-κB , 2001, Nature.

[34]  C. Fisher IKKalpha-/- mice share phenotype with pupoid fetus (pf/pf) and repeated epilation (Er/Er) mutant mice. , 2000, Trends in genetics : TIG.

[35]  H. F. Horn,et al.  Nucleophosmin/B23 Is a Target of CDK2/Cyclin E in Centrosome Duplication , 2000, Cell.

[36]  A. Israël,et al.  Complete lack of NF-kappaB activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. , 2000, Genes & development.

[37]  R. Eisenman,et al.  Analysis of Myc/Max/Mad network members in adipogenesis: Inhibition of the proliferative burst and differentiation by ectopically expressed Mad1 , 2000, Journal of cellular physiology.

[38]  Klaus Rajewsky,et al.  NEMO/IKKγ-Deficient Mice Model Incontinentia Pigmenti , 2000 .

[39]  V. Godfrey,et al.  Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. , 2000, Molecular cell.

[40]  T. Mak,et al.  Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. , 2000, Genes & development.

[41]  D. Roop,et al.  12‐O‐tetradecanoylphorbol‐13‐acetate promotion of transgenic mouse epidermis coexpressing transforming growth factor‐α and v‐fos: acceleration of autonomous papilloma formation and malignant conversion via c‐Ha‐ras activation , 1999, Molecular carcinogenesis.

[42]  David M. Rothwarf,et al.  The NF-κB Activation Pathway: A Paradigm in Information Transfer from Membrane to Nucleus , 1999, Science's STKE.

[43]  K. Kinzler,et al.  14-3-3σ is required to prevent mitotic catastrophe after DNA damage , 1999, Nature.

[44]  L. Ährlund‐Richter,et al.  Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. , 1999, Cancer research.

[45]  L. Raftery,et al.  TGF-beta family signal transduction in Drosophila development: from Mad to Smads. , 1999, Developmental biology.

[46]  T. Deerinck,et al.  The IKKβ Subunit of IκB Kinase (IKK) is Essential for Nuclear Factor κB Activation and Prevention of Apoptosis , 1999, The Journal of experimental medicine.

[47]  I. Verma,et al.  IKK1-deficient mice exhibit abnormal development of skin and skeleton. , 1999, Genes & development.

[48]  D. Roop,et al.  Characterization of loricrin regulation in vitro and in transgenic mice. , 1999, Differentiation; research in biological diversity.

[49]  Inder M. Verma,et al.  Severe Liver Degeneration in Mice Lacking the IκB Kinase 2 Gene , 1999 .

[50]  S. Akira,et al.  Limb and skin abnormalities in mice lacking IKKalpha. , 1999, Science.

[51]  T. Deerinck,et al.  Abnormal Morphogenesis But Intact IKK Activation in Mice Lacking the IKKα Subunit of IκB Kinase , 1999 .

[52]  L. Old,et al.  Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[53]  P. Elias,et al.  Acute barrier perturbation abolishes the Ca2+ and K+ gradients in murine epidermis: quantitative measurement using PIXE. , 1998, The Journal of investigative dermatology.

[54]  S. Petersen,et al.  Distinct regions of allelic imbalance on chromosome 10q22-q26 in squamous cell carcinomas of the lung , 1998, Oncogene.

[55]  P. Khavari,et al.  Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB , 1998 .

[56]  F M Watt,et al.  c-Myc promotes differentiation of human epidermal stem cells. , 1997, Genes & development.

[57]  Matthias Mann,et al.  IKK-1 and IKK-2: Cytokine-Activated IκB Kinases Essential for NF-κB Activation , 1997 .

[58]  E. Zandi,et al.  The IκB Kinase Complex (IKK) Contains Two Kinase Subunits, IKKα and IKKβ, Necessary for IκB Phosphorylation and NF-κB Activation , 1997, Cell.

[59]  David M. Rothwarf,et al.  A cytokine-responsive IκB kinase that activates the transcription factor NF-κB , 1997, Nature.

[60]  T. Magnuson,et al.  Targeted disruption of the epidermal growth factor receptor impairs growth of squamous papillomas expressing the v-ras(Ha) oncogene but does not block in vitro keratinocyte responses to oncogenic ras. , 1997, Cancer research.

[61]  K. Kiguchi,et al.  Analysis of the ability of 12-O-tetradecanoylphorbol-13-acetate to induce epidermal hyperplasia, transforming growth factor-alpha, and skin tumor promotion in wa-1 mice. , 1997, The Journal of investigative dermatology.

[62]  David Baltimore,et al.  Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB , 1995, Nature.

[63]  M. Connelly,et al.  CHUK, a conserved helix-loop-helix ubiquitous kinase, maps to human chromosome 10 and mouse chromosome 19. , 1995, Genomics.

[64]  E. Fuchs,et al.  The epidermis: rising to the surface. , 1994, Current opinion in genetics & development.

[65]  W. Pierceall,et al.  N-ras mutation in ultraviolet radiation-induced murine skin cancers. , 1992, Cancer research.

[66]  J. Simon,et al.  A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A. Balmain,et al.  Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis , 1986, Nature.

[68]  A. Balmain,et al.  Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene , 1983, Nature.

[69]  F. Watt,et al.  Stratification and terminal differentiation of cultured epidermal cells , 1982, Nature.

[70]  S. Yuspa,et al.  Mouse skin cells resistant to terminal differentiation associated with initiation of carcinogenesis , 1981, Nature.

[71]  Karen Holbrook,et al.  Calcium regulation of growth and differentiation of mouse epidermal cells in culture , 1980, Cell.

[72]  T. Sun,et al.  Differentiation of the epidermal keratinocyte in cell culture: Formation of the cornified envelope , 1976, Cell.

[73]  J. Segre,et al.  Strain-dependent perinatal lethality of Ovol1-deficient mice and identification of Ovol2 as a downstream target of Ovol1 in skin epidermis. , 2007, Biochimica et biophysica acta.

[74]  R. Eisenman,et al.  The Myc/Max/Mad network and the transcriptional control of cell behavior. , 2000, Annual review of cell and developmental biology.

[75]  M. Karin,et al.  Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. , 2000, Annual review of immunology.

[76]  T. Mak,et al.  Severe liver degeneration and lack of NF - k B activation in NEMO/IKK g -deficient mice , 2000 .

[77]  T. Jacks,et al.  Sunburn and p53 in the onset of skin cancer , 1994, Nature.

[78]  D. Roop,et al.  Induction of epidermal hyperplasia, hyperkeratosis, and papillomas in transgenic mice by a targeted v‐Ha‐ras oncogene , 1993, Molecular carcinogenesis.

[79]  T. Slaga,et al.  Critical genetic determinants and molecular events in multistage skin carcinogenesis. , 1986, Symposium on Fundamental Cancer Research.

[80]  D. Lowy,et al.  An activated Harvey ras oncogene produces benign tumours on mouse epidermal tissue , 1986, Nature.

[81]  Rascon [The National Cancer Institute]. , 1953, Boletin cultural e informativo - Consejo General de Colegios Medicos de Espana.