Analysis of Gene Expression Profile to Select Patient Samples for Outcome Prediction

[1]  Shyi-Ming Chen,et al.  AUTOMATICALLY CONSTRUCTING MEMBERSHIP FUNCTIONS AND GENERATING FUZZY RULES USING GENETIC ALGORITHMS , 2002 .

[2]  L. Staudt,et al.  The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. , 2002, The New England journal of medicine.

[3]  Yudong D. He,et al.  A Gene-Expression Signature as a Predictor of Survival in Breast Cancer , 2002 .

[4]  Lu Tian,et al.  Linking gene expression data with patient survival times using partial least squares , 2002, ISMB.

[5]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[6]  Hiroyuki Honda,et al.  Selection of Causal Gene Sets from Transcriptional Profiling by FNN Modeling and Prediction of Lymphoma Outcome , 2002 .

[7]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[8]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[9]  David E. Misek,et al.  Gene-expression profiles predict survival of patients with lung adenocarcinoma , 2002, Nature Medicine.

[10]  Michael LeBlanc,et al.  Directed indices for exploring gene expression data , 2003, Bioinform..

[11]  M Lunn,et al.  Applying Cox regression to competing risks. , 1995, Biometrics.

[12]  Todd,et al.  Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.

[13]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.